
BN�nder2: Bayesian networks learning and

Bayesian classi�cation

Norbert Dojer, Paweª Bednarz, Agnieszka Podsiadªo i Bartek Wilczy«ski

December 18, 2012

Contents

1 Supplementary methods 1
1.1 Polynomial-time exact algorithm 1
1.2 Minimal Description Length . 4
1.3 Bayesian-Dirichlet equivalence . 5
1.4 Mutual information test . 6
1.5 Continuous variables . 7
1.6 Network density control . 8

1 Supplementary methods

In the present section we give a brief exposition of the algorithm implemented
in BNFinder and its computational cost for two generally used scoring criteria:
Minimal Description Length and Bayesian-Dirichlet equivalence. For a fuller
treatment, including detailed proofs, we refer the reader to [3, 4].

1.1 Polynomial-time exact algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set
of discrete random variables X = {X1, . . . , Xn}. The representation consists of
two components:

• a directed acyclic graph G = (X,E) encoding conditional (in-)dependencies

• a family θ of conditional distributions P (Xi|Pai), where

Pai = {Y ∈ X|(Y,Xi) ∈ E}

The joint distribution of X is given by

P (X) =

n∏
i=1

P (Xi|Pai) (1)

1

The problem of learning a BN is understood as follows: given a multiset
of X-instances D = {x1, . . . ,xN} �nd a network graph G that best matches
D. The notion of a good match is formalized by means of a scoring function
S(G : D) having positive values and minimized for the best matching network.
Thus the point is to �nd a directed acyclic graph G with the set of vertices X
minimizing S(G : D).

The BNFinder program is devoted to the case when there is no need to
examine the acyclicity of the graph, for example:

• When dealing with dynamic Bayesian networks. A dynamic BN describes
stochastic evolution of a set of random variables over discretized time.
Therefore conditional distributions refer to random variables in neighbor-
ing time points. The acyclicity constraint is relaxed, because the �unrolled�
graph (with a copy of each variable in each time point) is always acyclic
(see [5] for more details). The following considerations apply to dynamic
BNs as well.

• In case of static Bayesian Networks, the user has to supply the algorithm
with a partial ordering of the vertices, restricting the set of possible edges
only to the ones consistent with the ordering. BNFinder lets the user to
divide the set of variables into an ordered set of disjoint subsets of vari-
ables, where edges can only exist between variables from di�erent subsets
and they have to be consistent with the ordering. If such ordering is not
known beforehand, one can try to run BNFinder with di�erent orderings
and choose a network with the best overall score.

In the sequel we consider some assumptions on the form of a scoring function.
The �rst one states that S(G : D) decomposes into a sum over the set of random
variables of local scores, depending on the values of a variable and its parents
in the graph only.

Assumption 1 (additivity) S(G : D) =
∑n
i=1 s(Xi,Pai : D|{Xi}∪Pai), where

D|Y denotes the restriction of D to the values of the members of Y ⊆ X.

When there is no need to examine the acyclicity of the graph, this assumption
allows to compute the parents set of each variable independently. Thus the point
is to �nd Pai minimizing s(Xi,Pai : D|{Xi}∪Pai) for each i.

Let us �x a dataset D and a random variable X. We denote by X′ the set of
potential parents of X (possibly smaller than X due to given constraints on the
structure of the network). To simplify the notation we continue to write s(Pa)
for s(X,Pa : D|{X}∪Pa).

The following assumption expresses the fact that scoring functions decom-
pose into 2 components: g penalizing the complexity of a network and d evalu-
ating the possibility of explaining data by a network.

Assumption 2 (splitting) s(Pa) = g(Pa) + d(Pa) for some functions g, d :
P(X)→ R+ satisfying Pa ⊆ Pa′ =⇒ g(Pa) ≤ g(Pa′).

2

This assumption is used in the following algorithm to avoid considering net-
works with inadequately large component g.

Algorithm 1

1. Pa := ∅

2. for each P ⊆ X′ chosen according to g(P)

(a) if s(P) < s(Pa) then Pa := P

(b) if g(P) ≥ s(Pa) then return Pa; stop

In the above algorithm choosing according to g(P) means choosing increas-
ingly with respect to the value of the component g of the local score.

Theorem 1 Suppose that the scoring function satis�es Assumptions 1-2. Then
Algorithm 1 applied to each random variable �nds an optimal network.

A disadvantage of the above algorithm is that �nding a proper subset P ⊆ X′

involves computing g(P′) for all ⊆-successors P′ of previously chosen subsets.
It may be avoided when a further assumption is imposed.

Assumption 3 (uniformity) |Pa| = |Pa′| =⇒ g(Pa) = g(Pa′).

The above assumption suggests the notation ĝ(|Pa|) = g(Pa). The following
algorithm uses the uniformity of g to reduce the number of computations of the
component g.

Algorithm 2

1. Pa := ∅

2. for p = 1 to n

(a) if ĝ(p) ≥ s(Pa) then return Pa; stop

(b) P = argmin{Y⊆X′:|Y|=p}s(Y)

(c) if s(P) < s(Pa) then Pa := P

Theorem 2 Suppose that the scoring function satis�es Assumptions 1-3. Then
Algorithm 2 applied to each random variable �nds an optimal network.

3

1.2 Minimal Description Length

The Minimal Description Length (MDL) scoring criterion originates from infor-
mation theory [7]. A network N is viewed here as a model of compression of
a dataset D. The optimal model minimizes the total length of the description,
i.e. the sum of the description length of the model and of the compressed data.
MDL is e�ectively equivalent to Bayesian Information Criterion (BIC) (see [8]),
which approximates Bayesian scores (see next section) and is also applicable to
continuous data.

Let us �x a dataset D = {x1, . . . ,xN} and a random variable X. Recall the
decomposition s(Pa) = g(Pa) + d(Pa) of the local score for X. In the MDL
score g(Pa) stands for the length of the description of the local part of the
network (i.e. the edges ingoing to X and the conditional distribution P (X|Pa))
and d(Pa) is the length of the compressed version of X-values in D.

Let kY denote the cardinality of the set VY of possible values of the random
variable Y ∈ X. Thus we have

g(Pa) = |Pa| log n+
logN

2
(kX − 1)

∏
Y ∈Pa

kY

where logN
2 is the number of bits we use for each numeric parameter of the

conditional distribution. This formula satis�es Assumption 2 but fails to satisfy
Assumption 3. Therefore Algorithm 1 can be used to learn an optimal network,
but Algorithm 2 cannot.

However, for many applications we may assume that all random variables
have the same value set V of cardinality k. In this case we obtain the formula

g(Pa) = |Pa| log n+
logN

2
(k − 1)k|Pa|

which satis�es Assumption 3. For simplicity, we continue to work under this
assumption.

Compression with respect to the network model is understood as follows:
when encoding the X-values, the values of Pa-instances are assumed to be
known. Thus the optimal encoding length is given by

d(Pa) = N ·H(X|Pa)

where H(X|Pa) = −
∑
v∈V

∑
v∈VPa P (v,v) logP (v|v) is the conditional en-

tropy of X given Pa (the distributions are estimated from D).
Since all the assumptions from the previous section are satis�ed, Algorithm

2 may be applied to learn the optimal network. Let us turn to the analysis of
its complexity.

Theorem 3 The worst-case time complexity of Algorithm 2 for the MDL score
is O(nlogk NN logkN).

4

1.3 Bayesian-Dirichlet equivalence

The Bayesian-Dirichlet equivalence (BDe) scoring criterion originates from Bayesian
statistics [1]. Given a dataset D the optimal network structure G maximizes the
posterior conditional probability P (G|D). We have

P (G|D) ∝ P (G)P (D|G) = P (G)

∫
P (D|G, θ)P (θ|G)dθ

where P (G) and P (θ|G) are prior probability distributions on graph structures
and conditional distributions' parameters, respectively, and P (D|G, θ) is evalu-
ated due to (1).

Heckerman et al. [6], following Cooper and Herskovits [1], identi�ed a set
of independence assumptions making possible decomposition of the integral in
the above formula into a product over X. Under this condition, together with
a similar one regarding decomposition of P (G), the scoring criterion

S(G : D) = − logP (G)− logP (D|G)

obtained by taking− log of the above term satis�es Assumption 1. Moreover, the
decomposition s(Pa) = g(Pa) + d(Pa) of the local scores appears as well, with
the components g and d derived from − logP (G) and − logP (D|G), respectively.

The distribution P ((X,E)) ∝
∏
e∈E αe with penalty parameters 0 < αe <

1 is commonly used as a prior over the network structures. BNFinder sets
α(Y,X) = 1/kY by default. This choice results in the function

g(Pa) =
∑
Y ∈Pa

log kY

satisfying Assumptions 2. If we moreover assume that all random variables have
the same value set V of cardinality k, we obtain the function

g(Pa) = |Pa| log k

satisfying also Assumption 3. For simplicity, we continue to work under this
assumption.

However, it should be noticed that there are also used priors which satisfy
neither Assumption 2 nor 3, e.g. P (G) ∝ α∆(G,G0), where ∆(G,G0) is the car-
dinality of the symmetric di�erence between the sets of edges in G and in the
prior network G0.

The Dirichlet distribution is generally used as a prior over the conditional
distributions' parameters. It yields

d(Pa) = log

 ∏
v∈V|Pa|

Γ(
∑
v∈V(Hv,v +Nv,v))

Γ(
∑
v∈V Hv,v)

∏
v∈V

Γ(Hv,v)

Γ(Hv,v +Nv,v)


where Γ is the Gamma function, Nv,v denotes the number of samples in D
with X = v and Pa = v, and Hv,v is the corresponding hyperparameter of the
Dirichlet distribution.

5

Setting all the hyperparameters to 1 yields

d(Pa) = log

 ∏
v∈V|Pa|

(k − 1 +
∑
v∈V Nv,v)!

(k − 1)!

∏
v∈V

1

Nv,v!

 =

=
∑

v∈V|Pa|

(
log(k − 1 +

∑
v∈V

Nv,v)!− log(k − 1)!−
∑
v∈V

logNv,v!

)

where k = |V|. For simplicity, we continue to work under this assumption
(following Cooper and Herskovits [1]). The general case may be handled in a
similar way.

The following result allows to re�ne the decomposition of the local score into
the sum of the components g and d.

Proposition 1 De�ne dmin =
∑
v∈V (log(k − 1 +Nv)!− log(k − 1)!− logNv!),

where Nv denotes the number of samples in D with X = v. Then d(Pa) ≥ dmin
for each Pa ∈ X.

By the above proposition, the decomposition of the local score given by
s(Pa) = g′(Pa) + d′(Pa) with the components g′(Pa) = g(Pa) + dmin and
d′(Pa) = d(Pa) − dmin satis�es all the assumptions required by Algorithm 2.
Let us turn to the analysis of its complexity.

Theorem 4 The worst-case time complexity of Algorithm 2 for the BDe score
with the decomposition of the local score given by s(Pa) = g′(Pa) + d′(Pa) is
O(nN logα−1 kN2 logα−1 k).

1.4 Mutual information test

The Mutual Information Test (MIT) scoring criterion originates from the con-
cept of mutual information, belonging to the family of measures based on infor-
mation theory [2]. Brie�y speaking, this method combines mutual information
measure and a statistical independence test based on the chi-square dustribution
assosiated with it. The goodness of a �t of the particular network is computed
as the total mutual information between each node and its parents. This score is
then penalized by a term corresponding to the degree of statistical signi�cance
of the shared information.

Let D be a dataset with N observations, G be the dynamic bayesian network.
Let X = {X1, ..., Xn} be the set of n variables, with each of it corresponding
to {r1, ..., rn} discrete states. Let's denote the set of parents of Xi in G with
corresponding {ri1, ..., risi} discrete states as Pai = {Xi1, ..., Xisi}. Then the
MIT score is de�ned as follows [10]:

S(G : D) =

n∑
i=0;Pai 6=∅

{2N · I(Xi,Pai)−
si∑
j=1

χαliσi(j)}

6

In this formula I(Xi,Pai) denotes the mutual information between Xi and
its parents as estimated from D and de�ned as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
χαliσi(j) is the chi-square distribution at signi�cance level 1 − α. It is de�ned
as the value such that

p(χ2(lij) ≤ χαlij) = α

The term liσi(j) denotes the degrees of freedom and is de�ned as

liσi(j) =

{
(ri − 1)(riσi(j) − 1)

∏j−1
k=1 riσi(k), j = 2.., si.

(ri − 1)(riσi(j) − 1), j = 1.

where σi = {σi(1), ..., σi(si)} is any permutation of the index set {1...si} of Pai
such that, the number of states of the variables decreases with the increasing
position in the permutation.

Recall the decomposition SMIT (Pai) = dMIT (Pai) + gMIT (Pai). In this
case:

dMIT (Pai) = 2N · I(Xi,X)− 2N · I(Xi,Pai)

gMIT (Pai) =

si∑
j=1

χαliσi(j)

Roughly, dMIT measures the accuracy of representing the joint distribution
of D by G while gMIT measures the complexity of this representation. This
decomposition satis�es Assumption 2. However, MIT score de�ned in this way
does not satisfy Assumption 3. Therefore, we introduce an assumption that all
the variables have the same number of discrete states.

Assumption 4 (uniformity) All variables in X have the same number of dis-
crete states k.

Under this assumption it can be easily shown that gMIT satis�es Assumption
3.

Theorem 5 [9] The worst-case time complexity of Algorithm 2 for the MIT
score under the assumption of the variables uniformity is polynomial in the
number of variables.

1.5 Continuous variables

All the scoring functions implemented in BNFinder (MDL, BDe and MIT) were
originally designed for discrete variables. In order to avoid arbitrary discretiza-
tion of continuous data we adapted them to deal with continuous variables

7

directly. Moreover, our method works also with heterogenous data sets joining
together discrete and continuous variables.

The distribution of each continuous variable X is assumed to be a mixture of
two normal distributions. Mixture components correspond to the two possible
values (low and high) of a related hidden discrete variable X ′ and X is viewed
as its observable re�ection. Consequently, the conditional distributions of X is
given by:

P (X|Pa) =
∑

v∈{low,high}

∑
v∈{low,high}|Pa|

P (X|X ′ = v)P (X ′ = v|Pa′ = v)P (Pa′ = v|Pa)

Conditional distributions P (X|X ′) are assumed to be independent for all
variables X. Thus we estimate their parameters separately for each X in a
preprocessing step. Estimation is based on data clustering with the k-means
algorithm (k = 2, cutting the set of variable values in the median yields initial
clusters). Due to the independence assumption, these parameters enable us to
calculate also P (Pa′|Pa) =

∏
Y ∈Pa P (Y ′|Y). Thus the space of possible con-

ditional distributions on continuous variables forms a family of Gaussian mix-
tures, parameterized by P (X ′|Pa′), conditional distributions on corresponding
discrete variables.

From a technical point of view, BNFinder learns optimal network struc-
tures for these discrete variables, using scoring functions adapted to handle
distributions on variable values instead of their determined values (expected
values of original scores are computed). For continuous variables it gives op-
timal Bayesian networks from among all networks with conditional probability
distributions belonging to the above de�ned family of Gaussian mixtures.

The following results present the complexity of our algorithm with continu-
ous MDL and BDe scoring functions.

Theorem 6 The worst-case time complexity of Algorithm 2 for the continuous
MDL score is O(nlogNN2).

Theorem 7 The worst-case time complexity of Algorithm 2 for the continuous
BDe score with the decomposition of the local score given by s(Pa) = g′(Pa) +

d′(Pa) is O((2n)
N

logα−1N).

1.6 Network density control

Recall that scoring functions decompose into 2 components: g penalizing the
complexity of a network and d evaluating the possibility of explaining data by
a network. The balance between these components in�uences the reliability of
reconstructed relationships between variables � high g-to-d ratio results in high
speci�city, while low g-to-d ratio yields high sensitivity.

BNFinder has 3 mechanisms controlling this balance:

1. Option -d directly multiplies g-to-d ratio by a uniform factor for all pairs
of variables.

8

2. Option -r sets g-to-d ratios for all edges according to speci�ed proportion
of false positive edges (type I error rate). It is particularly useful for
heterogeneous sets of potential parents (continuous and discrete, discrete
with varying levels of discretization), when di�erent types of variables
require speci�c treatment.

3. Input dataset preamble commands #prioredge and #priorvert modify
g-to-d ratios for speci�ed network edges. They are intended to incorpo-
rate into the learning process prior knowledge regarding possible variable
dependencies. This method may be combined with one of previous mech-
anisms.

Option -d modi�es g-to-d ratio by virtual dataset multiplication. Remaining
two mechanisms adjust components g of the scoring function. It is done through
rede�ning the formula for g by raising parameters kY , the number of discretiza-
tion levels of a potential parent Y to appropriate powers wY,X (in the case of
BDe, it is just a modi�cation of a prior distribution over network structures).
Exponents wY,X are either adjusted to required type I error rate or speci�ed in
the preamble of a dataset. They must satisfy wY,X > 0, default values wY,X = 1
result in the original formula for g component.

The control of type I error rate is based on a statistical model for 1-element
set of potential parents and extrapolated to all sets. In the 1-element case there
are only 2 potential parent sets: ∅ and {Y }, where Y is the only potential parent
of considered regulated variableX. First, BNFinder calculates the required type
I error probability for edge (Y,X). When no prior distribution on the network
structure is speci�ed in the dataset preamble, all edge error probabilities equal
the requested type I error rate. Otherwise they are weighted according to the
inverses of prior parameters.

Under a null hypothesis H0 that variables X and Y are independent, type
I error occurs when s({Y }) < s(∅). We de�ne ZY,X = d({Y }) − d(∅) and
zY,X = g(∅) − g({Y }). Thus s({Y }) < s(∅) if and only if ZY,X < zY,X . Note
that ZY,X is a function of dataset values of random variables X and Y , so it is
a random variable too. On the other hand, zY,X is independent of the data and
monotonically depends on wY,X .

BNFinder randomly permutes values of Y in the dataset and calculates ZY,X
for each permutation. The number of permutations is adapted to requested
type I error probability and the dataset size. Moreover, it may be manually
restricted by the user. Then the estimate of cumulative distribution function
for ZY,X under H0 assumption is derived from calculated values and the lower
bound on ZY,X , dmin−d(∅). Based on this distribution BNFinder adjusts wY,X
to yield P (ZY,X < zY,X |H0) equal to the required type I error probability for
edge (Y,X).

9

References

[1] Gregory F. Cooper and Edward Herskovits. A Bayesian method for the
induction of probabilistic networks from data. Machine Learning, 9:309�
347, 1992.

[2] Luis M. de Campos. A scoring function for learning bayesian networks
based on mutual information and conditional independence tests. Journal
of Machine Learning Research, 7:2149�2187, 2006.

[3] Norbert Dojer. Learning Bayesian Networks Does Not Have to Be NP-Hard.
In Rastislav Královic and PaweªUrzyczyn, editors, Proceedings of Mathe-
matical Foundations of Computer Science 2006, pages 305�314. Springer-
Verlag, 2006. LNCS 4162.

[4] Norbert Dojer. An e�cient algorithm for learning bayesian networks from
data. Fundamenta Informaticae, 103(1):53�67, January 2010.

[5] N Friedman, K Murphy, and S Russell. Learning the structure of dynamic
probabilistic networks. In G F Cooper and S Moral, editors, Proceedings of
the Fourteenth Conference on Uncertainty in Arti�cial Inteligence, pages
139�147, 1998.

[6] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning
Bayesian networks: The combination of knowledge and statistical data.
Machine Learning, 20(3):197�243, Sep. 1995.

[7] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach
based on the MDL principle. Computational Intelligence, 10(3):269�293,
1994.

[8] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[9] Vinh Nguyen. The globalmit toolkit for learning optimal dynamic bayesian
network user guide. 2011.

[10] Nguyen Xuan Vinh, Madhu Chetty, Ross Coppel, and Pramod P.Wangikar.
Globalmit: learning globally optimal dynamic bayesian network with the
mutual information test criterion. Bioinformatics, 27(19):2765�2766, 2011.

10

