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1 Tutorial

This short tutorial presents the most common possible uses of the BNfinder software. The first part of this tutorial
is devoted to presenting possible options of the software and the input files on simplistic, synthetic examples. In the
second part, we provide more realistic examples taken from published studies of data for inferring dynamic and static
networks.

In this tutorial, we will assume that you are using the standalone BNfinder application as downloaded from
http://bioputer.mimuw.edu.pl/software/bnf, however if you want, you can also try out these examples with our web-
server at http://bioputer.mimuw.edu.pl/BIAS/BNFinder.

If you have any questions regarding this document or the described software, please contact us: bartek@mimuw.edu.pl
or dojer@mimuw.edu.pl

1.1 Synthetic examples

This section shows on several simple networks, how to prepare datasets and set the parameters for network reconstruc-
tion with BNfinder. The examples include a simple static network, dynamic network and a network requiring setting
prior probabilities.


http://bioputer.mimuw.edu.pl/software/bnf
http://bioputer.mimuw.edu.pl/BIAS/BNFinder
bartek@mimuw.edu.pl
dojer@mimuw.edu.pl

Figure 1: Very simple network consisting of 2 regulators and 4 observable regulatees.

Simple static network

The first example shows how to use BNfinder to learn a simple static Bayesian network. Let us imagine that we
are analysisng cells under two conditions P1 and P2 and that we are interested whether any of the four genes:
G1,G2,G3, G4 are responding to these conditions. We assume that the true network is depicted in Fig 1, i.e.

e (71 is not dependent on P1 or P2,
e (32 is more likely to be expressed under condition P1,
e (53 is less likely to be expressed under condition P2,
e (4 is more likely to be expressed under any of the conditions P1 or P2.
We have collected 100 datapoints from this network, each consisting of both the state of conditions and the discrete

state of expression of the genes. You can download the input file here data/input1.txt.

If you open the file in a text editor, please note that the first line contains the information on the assumed structure:
#regulators Pl P2

This represents the fact, that we assume that genes (G1..G4) can depend on conditions (P1, P2) and not the other way
around.

You can try to run BNfinder on this file:
bnf -e inputl.txt -n outputl.sif -v

and you will see, that the network topology is reconstructed properly. Also the orientation of the regulatory interactions
is inferred properly as you can see in the output file data/outputi .sif.

You can also try to see whether the optimal network is representative for a larger set of possible suboptimal networks:
bnf -e inputl.txt -n outputlw.sif -v -i 4 -t outputl.txt

This time, in the output file (data/outputiw.sif), the edge labels represent the relative weights of different edges. In the
file data/outputi.ixt, we can find the originally computed weights (i.e. relative probabilities — see manual for details)
for all considered suboptimal sets of parents for all genes.

Instead of fixing the number of returned parents sets (option —i 4) you can specify thresholds for their weights
and/or weight ratios to optimal weights. For example, if you wish to get for each vertex v all parents sets with weights
> max(0.1,0.01 - wep (v)), where wep (v) denotes the weight of the optimal parents set of v, you can type:
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data/input1.txt
data/output1.sif
data/output1w.sif
data/output1.txt

bnf -e inputl.txt -n outputla.sif -v -i -1 -m 0.1 -o 0.01 -t outputla.txt

We can also try to analyze the data for this network without discretization: data/input2.txt. In this case we need another
directive to indicate that some of the dataseries are continuous:

#continuous Gl G2 G3 G4

Again if we run BNfinder on this data,

bnf -e input2.txt -n output2.sif -v

we can verify, that the output file contains correct information data/output2.sif.

Simple dynamic network

BNfinder can be used also to infer dynamic Bayesian networks from time series data. In this case it is not necessary
to specify the regulators sets, because DBNs, unlike static networks do not need to be acyclic.

In the first dataset: data/input3.ixt, we have 1 serie of 20 consecutive measurements of gene expression from gene
network depicted in Fig. 2.

G2

Figure 2: Very simple dynamic network consisting of 5 observables

If we run BNfinder on this data:

bnf -e input3.txt -n output3.sif -v

We can see that the program was unable to correctly reconstruct all the edges. Again, if we look at the statistics of
edge occurences in suboptimal networks,

bnf -e input3.txt -n output3.sif -v -i 10 -t output3.txt
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data/input2.txt
data/output2.sif
data/input3.txt

we can see that the correct edges are the most commonly occuring ones, but they score lower than empty parent sets.

In this case we can show how perturbational data can be integrated into this framework. We have collected gene expres-
sion from 5 time-series containing one single gene knockout for each of the genes: data/input4.txt. The perturbations
are noted by including the following lines in the preamble of the data file:

#perturbed EXP1 Gl
#perturbed EXP2 G2
#perturbed EXP3 G3
#perturbed EXP4 G4
#perturbed EXP5 GO

If we run BNfinder on the perturbed data, we can see that all the edges are reconstructed with high confidence.

bnf -e inputd.txt -n outputd.sif -v -i 10 -t outputéd.txt

Setting priors

Ol

Figure 3: Exemplary network containing dependencies of different strength

In some cases it might be useful to include some prior information on the network structure into the process of
inference. We will illustrate this on an example of a simple network similar to the one described in section 1.1. This
time it is an even simpler network, with 2 conditions and 2 genes as depicted in Fig. 3. Even though topology of the
network is very simple, the problem lies in the fact that the dependence of G2 on P2 is weaker than the dependence
of G1 on P1. This is why if we run our software on the unmodified dataset data/input5.txt,

bnf -e inputS5.txt -n outputb.sif -v -1 10 -t outputb.txt

we can see that the program is unable to recover the P2 — (2 edge. However, if we expect that G2 is responding
weakly to its regulators, we can increase the prior probability of G2 being regulated by any of the factors P1, P2 via
decreasing its weight:

#prioredge G2 0.33 P2 P1

We can see the edge appearing in the result as expected (see data/input6a.txt):
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data/input4.txt
data/input5.txt
data/input6a.txt

bnf -e input6a.txt -n outputba.sif -v -1 10 -t outputba.txt

Similarly, if we expect, that in general gene response to condition P2 is weaker, we may modify the prior probability
of the condition P2 to be a regulator:

#priorvert 0.33 P2

The result of running BNFinder with this input (data/input6b.txt) is very similar to the previous one:

bnf -e input6b.txt -n outputéb.sif -v -i 10 -t outputbb.txt

1.2 Examples of published datasets

In this section, we present two more realistic examples of published datasets used for inference of Bayesian networks.
The first one consists of measurements of states of protein signalling network under different perturbations [1]. It’s
been used to infer causal relationships in the form of static Bayesian network.

The second dataset comes from documentation of the Banjo package [2] which can be downloaded from
(http://www.cs.duke.edu/~amink/software/banjo). It consists of 2000 observations describing a relatively large dy-
namic network consisting of 20 nodes. It may be considered a benchmark of the efficiency of our algorithm.

The third dataset is converted from an example attached to the globalMIT software for Bayesian network reconstruc-
tion. It is similar to the second example as it is also generated from a dynamic Bayesian network and consists of 2000
observations of 20 variables. However, in this case the variables are much less interconnected and there are many
self-regulatory loops.

PLEASE NOTE that these datasets are too large to be run through BNFinder webserver. If you would like to
run them, please download the software.

Static Protein signalling network

In this section we present how BNfinder can be applied to a protein signalling network analyzed by Sachs et al [1].
We took the data from the article, and transformed it into the format suitable for BNfinder. We also needed to specify
several properties of the data in the preamble of the file data/sachs.inp

Firstly, we needed to specify that the data are continuous measurements:

#continuous praf pmek plcg PIP2 PIP3 p44/42 paktsd473 PKA PKC P38 pjnk

Then, we needed to specify the expected layer structure of the signalling pathway we are studying:
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data/input6b.txt
http://www.cs.duke.edu/$sim $amink/software/banjo
data/sachs.inp

Figure 4: Reconstruction of the protein signalling network. Dark blue arrows represent dependencies found in litera-
ture. Light blue arrows represent dependencies found by BNfinder but not expected by Sachs et al. [1]

#regulators plcg
#regulators PIP3
#regulators PIP2
#regulators PKC
#regulators PKA
#regulators praf
#regulators pjnk pmek P38
#regulators p44/42
#regulators pakts473

Then we needed to specify which of the proteins are affected by different perturbations.

#perturbed cd3cd28psitect_0 PIP2
#perturbed cd3cd28psitect_1 PIP2
#perturbed cd3cd28psitect_2 PIP2

#perturbed cd3cd28g0076_0 PKC
#perturbed cd3cd28g0076_1 PKC
#perturbed cd3cd28g0076_2 PKC

When we finally run the BNfinder:

bnf -e sachs.inp -n sachs.sif -v

We obtain the network presented in Fig. 4. As we can see, the topology is quite consistent with the literature data. Out
of 17 expected edges, BNfinder recovers 11 correctly.

Dynamic Bayesian network

This is a dataset of substantial size which is used [3] to assess the performance of our inference algorithm. The input
dataset (data/input7.txt) consists of 2000 measurements of 20 variables and it takes approximately 3 hours to compute
it on a modern PC (2.4Ghz Intel Core 2 duo).
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data/input7.txt

We can run BNfinder with the following command (note that we are using the —1 option to limit the number of parents
to 5):

bnf -e input7.txt -n output7.sif -v -1 5 —-txt output7.txt

In Fig. 5 we can see part of the network reconstructed by BNfinder. All the edges reported by Banjo are also present in
the optimal network (dark blue). The optimal network contains a number of additional edges, not reported by Banjo.

Figure 5: The optimal network reconstructed by BNfinder from the dynamic benchmark dataset. The edges reported
also by Banjo are shown in dark blue.

If you want to see how much faster the MDL algorithm is, you can also run BNfinder with the following command:

bnf -s MDL -e input7.txt -n output7mdl.sif -v -1 5 —-txt output7mdl.txt

Dynamic network containing self-regulatory loops

In this example, we can utilize both the —g 1 option for allowing self-regulations as well as the —s MIT option for
using the MIT score.

bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -txt output8.txt -c output8.cpd -g 1

One additional parameter that is unique to the MIT score is the significance level « of the x? distribution (-a). The
default level for a is .9999, but we can increase/decrease it if we want to see fewer/more edges respectively.

For example, setting the level alpha to a higher value should give us more edges in the result:

1.2 Examples of published datasets 7



bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -a .9 -g 1l

Using multiple processors for faster computations

Since most current computers are equipped with multiple processors, we can take advantage of that fact to speed up
BNFinder computation. Especially for large datasets, such as the ones described in previous sections, we can take full
advantage of the parallell computation. For example, if we want BNfinder to run on 4 CPUs in parallell, we can use
the -k 4 option as in the following example:

bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -a .9 -g 1 -k 4

1.3 Example of classification with BNfinder

bnf-cv and bnc tools can be used to solve classification tasks with classifier based on Bayesian networks. The
former is used to perform a cross-validation test and the later to classify a dataset when you already have a classifier.
In our example we will try to solve the following problem: we have points within the unit square; our positive set
consists of those that are located in top-right and bottom-left corners, i.e. x +y > 1.8 or x + y < 0.2. The training
set consists of 100 positive and 100 negative examples. They are visualised in the following Fig. 6. The data can be
downloaded from here (data/training_set.txt). We marked x and y as continuous regulators. We will classify only one
feature, but it is possible to perform cross-validation and classification procedure for more variables. All variables not
marked as regulators are treated as variables to be explained by classifier.

02 3

0.2 0.4 0.6 0.8 1.0

Figure 6: The training set used in the classification example. Positive examples are coloured blue.

To perform a 10-fold cross-validation we can use the following command:

bnf-cv -e training_set.txt -c net.cpd -k 10 -r ROC.pdf
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data/trainingprotect unhbox voidb@x penalty @M hskip z@skip T1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip set.txt

As a result we obtain 10 files (net.cpdO, net.cpdl, ..., net.cpd9) containing networks in cpd format corresponding to
respective folds of the cross-validation. Every execution of foregoing command will bring different results, because a
splitinto 10 sets is done randomly. In the result file ROC.pdf there is a ROC plot showing the results of cross-validation
(see 7). Further results are printed to the standard output and contains (among others) information about regulators
taken to each of 10 classifiers and AUC measure of each classifier’s performance.
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Figure 7: The Receiver operating characteristics curve for 10-fold cross-validation. The thick curve shows the average
performance of classifiers.

To perform classification task on a test dataset we can use any of the nets obtained from cross-validation task but
usually it is better to train a classifier on the whole training dataset. It can be done by the following command:

bnf -e training_set.txt -c net.cpd

We will test out classifier on this (data/test_set.txt) dataset which consists of 1000 points from the unit square. Now,
by using the bnc tool we can obtain the classification. In the Fig. 8 we can see the result of classifying our test dataset
by classifier in the file net.cpd (we used 0.63 probability threshold to generate the plot):

bnc -o result.cls -p 1 -c net.cpd -d test_set.txt

We can also find the most probable class for corners for every experiment by executing:

bnc -o result.cls -m 1 -c net.cpd -d test_set.txt
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Figure 8: The result of classification. Blue and red points represents true positives and negatives. There was no false
negatives. False positives are coloured light red.
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