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1 Users manual

1.1 Installation

The BNFinder software uses setuptools, which is the standard library for packaging python software. The package
itselff is available through the Python Package Index (http:/pypi.python.org/pypi/BNfinder/) while more frequent re-
leases as well as the source code are available from the project website in launchpad (http:/launchpad.net/bnfinder).
After downloading the archive containing the current version of BNF, you should extract it to a directory of choice. In
unix-like systems you can do it by typing

tar —-xzf bnfinder-xxx—-xxx-.tgz

If you want to install the latest development version from launchpad, you can do it directly with bzr version manage-
ment tool:

bzr branch lp:bnfinder

Once you have the sources extracted, the installation is performed by a single command
python setup.py install

in the source directory (it may require the administrator privileges).

This installs the BNfinder library to an apropriate location for your python interpreter, and the bnf, the bnf-cv and the
bnc scripts which may be accessed from a command line.

In case you don’t have administrator privileges, you can either use bnfinder without installation (by invoking com-
mands within the downloaded directory) or by installing within user home directory:

python setup.py install —--user

System requirements

BNFinder is written in pure python, so the only true requirement is the python2 interpreter (any reasonably recent
version like 2.6.x or newer should do). Please note that BNFinder is not currently compatible with python3. If you are
interested in porting BNFinder to python3 please let us know.

There are several packages one might need to install to have BNFinder working properly, most notably the packages
scipy and fpconst are required for proper functioning of BNFinder

If you would like to generate ROC plots for classification, you will also need a working installation of the R language,
the Rpy2 python package and ROCR package withing R.

1.2 Usage
bnf

The bnf script is the main part of BNfinder command line tools. Is is used for learning the bayesian network from data
and can be executed by typing



http://pypi.python.org/pypi/BNfinder/
http://launchpad.net/bnfinder

bnf <options>

The following options are available:

-h, --help
print out a brief summary of options and exit
-e, ——expr <file>
load learning data from <file> (this option is obligatory)
-s, —-score <name>
learn with <name> scoring criterion; possible names are BDE (default) and MDL
-1, —--1limit <number>
limit the search space to networks with at most <number> parents for each vertex
-i, —--suboptimal <number>
return at most <number> best scored parents sets for each vertex (default 1; negative values result in no limit)
-m, —--min-empty <value>
for each vertex return only parents sets with relative probabilities greater than <value> (default 0)
-0, —-min-optimal <value>
for each vertex return only parents sets with the ratio of their posterior probability to the optimal set’s one greater
than <value> (default 0)
-r, —fpr <value>
adjust g components of the scoring function to yield the expected proportion of false positive edges (type I error
rate) equal to <value>; the procedure is switched off by default
-x, —-max—-permutations <number>
do not perform more than <number> permutations in the predetermination of type I error rate
-d, —--data-factor <number>
multiply (each item of) the dataset <number> times (default 1); this option may be used to change the propor-
tion between d and g components of the scoring function (see the definition of the splitting assumption); it has
no effect when the option —r is also used
-v, ——verbose
print out communicates on standard output
-p, ——-prior-pseudocount <number>
set the pseudocounts of data items with specified values of a vertex and its parents set to W{;% (resulting
in the total pseudocount equal to <number>) — this method follows Heckerman et al [7]; when the option
is unspecified, all pseudocounts are set to 1, following Cooper and Herskovitz [1]; pseudocounts are used as
hyperparameters of the Dirichlet priors of the BDE scoring criterion and also in the estimation of the conditional
probability distributions (CPDs) of learned network
-n, ——net <file>
write the learned network graph to <file> in the SIF format
-t, ——txt <file>
write the learned suboptimal parents sets to <file>
-b, —-bif <file>
write the learned optimal Bayesian network to <file> in the BIF format
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-c, ——cpd <file>

write the learned optimal Bayesian network to <file> as a Python dictionary
—f, ——fraction <value>

set the minimal weight of a parent to be considered in a parent set
—-a, —-chi <value>

set the alpha value for the chi-square distribution used in MIT score (default=.9999)
-g, —--sloops

allow self-loops in Dynamic Bayesian Networks (by default self-loops are disabled)
-k, ——-cpu <number>

use number of processes for multiprocessing - by default 0 is used (no multiprocessing)
bnf-cv

The bnf-cv script is a utility to perform cross-validation tests. The script can be executed by typing:

bnf-cv <options>

The following options are available:

-h, —--help
print out a brief summary of options and exit
-e, ——expr <file>
load learning data from <file> (this option is obligatory)
-k, ——cross-val-folds <number>
set the number of cross-validation folds to k; defaults to 10; if equal to 1, do not perform cross-validation at all
-s, —-score <name>
learn with <name> scoring criterion; possible names are BDE (default) and MDL
-1, —--1limit <number>
limit the search space to networks with at most <number> parents for each vertex
-i, —--suboptimal <number>
return at most <number> best scored parents sets for each vertex (default 1; negative values result in no limit)
-m, —--min-empty <value>
for each vertex return only parents sets with relative probabilities greater than <value> (default 0)
-0, —-min-optimal <value>
for each vertex return only parents sets with the ratio of their posterior probability to the optimal set’s one greater
than <value> (default 0)
-r, ——roc <file>
write ROC curve to the given file; it will contain a curve for each cross-validation fold and one additional
curve averaging remaining ones
-d, —--data-factor <number>
multiply (each item of) the dataset <number> times (default 1); this option may be used to change the propor-
tion between d and g components of the scoring function (see the definition of the splitting assumption);
1.2 Usage 5



-v,

N

_n,

_c,

-a,

-x,

Y,

bnc

——verbose
print out communicates on standard output

——prior-pseudocount <number>

set the pseudocounts of data items with specified values of a vertex and its parents set to W{;% (resulting
in the total pseudocount equal to <number>) — this method follows Heckerman et al [7]; when the option
is unspecified, all pseudocounts are set to 1, following Cooper and Herskovitz [1]; pseudocounts are used as
hyperparameters of the Dirichlet priors of the BDE scoring criterion and also in the estimation of the conditional
probability distributions (CPDs) of learned network

——net <file>
write the learned network graph in the SIF format to <file>0, <file>1, ..., <file> (k-1) for each cross-
validation fold respectively; k is the number of crossvalidation folds

——txt <file>
write the learned suboptimal parents sets to to <file>0, <file>1, .., <file> (k-1) for each cross-
validation fold respectively; k is the number of crossvalidation folds

——bif <file>
write the learned optimal Bayesian network in the BIF format to <file>0, <file>1, ..., <file> (k-1) for
each cross-validation fold respectively; k is the number of crossvalidation folds

—-—cpd <file>
write the learned optimal Bayesian network as a Python dictionary to <file>0, <file>1, .., <file> (k-1)
for each cross-validation fold respectively; k is the number of crossvalidation folds

——fraction <value>
set the minimal weight of a parent to be considered in a parent set

——chi <value>
set the alpha value for the chi-square distribution used in MIT score (default=.9999)

——xaxis <name>
specify x axis of the roc curve (tpr is default); see Rocr manual for posiible options

—--yaxis
specify x axis of the roc curve (fpr is default); see Rocr manual for posiible options

—--diag
set to 0 to remove diagonal line from roc plots

The bnc script allows you to perform a classification task, using a network encoded in a file in cpd format. The script
can be executed by typing:

bnc <options>

The following options are available:

-h,

-c,

—-help
print out a brief summary of options and exit

—-—cpd <file>
load <file> with the conditional probability distribution gotten from BNfinder (this option is obligatory)
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—-d, ——data <file>
load <file> with values of all regulator variables (this option is obligatory)

-m, —-ml
output only the most likely value; switched off for default

-p, ——prob <number>
output the probability of given class number (for all nodes)

-0, ——out <file>
write the result of the classification to £ile (by default writes to stdout)

When neither —m nor —p option is given, writes out for every regulatee and experiment the python dictionary with
probabilities for all classes.

1.3 Input format for structure learning

The learning data must be passed to BNfinder in a text file splitted into 3 parts: preamble, experiment specification
and experiment data. The preamble allows user to specify some features of data and/or network, while the next two
parts contain the learning data, essentially formatted as a table with space- or tab-separated values.

Preamble

The preamble allows specifying experiment peturbations, structural constraints, vertex value types, vertex CPD types
and edge weights. Each line in the preamble has the following form:

#<command> <arguments>

Experiments with perturbed values of some vertices carry no information regarding their regulatory mechanism. Thus
including these experiments data in learning parents of their perturbed vertices biases the result (see [5] for a detailed
treatment). The following command handles perturbations:

#perturbed <experiment/serie> <vertex list>
omit data from experiment (serie of experiments in the case of dynamic networks) <experiment/serie>
when learning parents of vertices from <vertex list>

One possible way of specifying structural constraints with BNfinder is to list potential parents of particular vertices.
An easier method is available for constraints of the cascade form, where the vertex set is splitted into a sequence of
groups and each parent of a vertex must belong to one of previous groups (a simple but extremely useful example is a
cascade with 2 groups: regulators and regulatees). There are 2 commands specifying structural constraints:

#iparents <vertex> <vertex list>
restrict the set of potential parents of <vertex>to <vertex list>.

#regulators <vertex list>
restrict the set of potential parents of all vertices except specified with #parents command or with previ-
ous or present #regulators command to vertices included in <vertex 1list> of previous or present
#regulators command.

Note that structural constraints forcing network’s acyclicity are necessery for learning a static Bayesian network with
BNfinder.

Vertex value types may be specified with the following commands:

1.3 Input format for structure learning 7



#discrete <vertex> <value list>
let <value 1ist> be possible values of <vertex>

#continuous <vertex list>
let float numbers be possible values of all vertices in <vertex list>

#default <value list>
let <value 1list> be possible values of all vertices except specified with #discrete or #continuous
command (when <value list> is FLOAT, float numbers are possible values)

Values in <value list> may be integers or words (strings without whitespaces). When some vertices are left
unspecified, BNfinder tries to recognize their possible value sets. However it may miss, in particular when some float
numbers are written in integer format or when some possible values are not represented in the dataset (note that the
size of the set of possible values affects the score).

The space of possible CPDs of some vertices given their parents may be restricted to noisy-and or noisy-or distribu-
tions. In this case, the sets of possible values of these vertices and their potential parents must be either {0, 1} or float
numbers. Moreover, BNfinder should be executed with the MDL scoring criterion. The following commands specify
vertices with noisy CPDs:

#and <vertex list>
restrict the space of possible CPDs of vertices from <vertex 1ist> to noisy-and distributions

#or <vertex list>
restrict the space of possible CPDs of vertices from <vertex 1ist> to noisy-or distributions

The following commands set prior weights on network edges:

#prioredge <vertex> <weight> <vertex list>
set the prior weights of all edges originating from vertices from <vertex 1ist> and aiming at <vertex>
to <weight>

#priorvert <weight> <vertex list>
set the prior weights of all edges originating from vertices from <vertex list> (except specified in
<prioredge> command) to <weight>

Weights must be positive float numbers. Edges with greater weights are penalized harder. The default weight is 1.

Experiment specification

The experiment specification has the following form:
<name> <experiment list>

where <name> is a word starting with a symbol other then #. It is used in some output formats as the name of the
learned network (until <name> = conditions, in such case the input file name is used). The form of experiment
names depends on the data type and, consequently, on the type of learned network:

e When the dataset consists of results of independent experiments and a static Bayesian network is to be learned,
experiment names are words without the symbol * :’.

e When the dataset consists of results of time series experiments and a dynamic Bayesian network is to be learned,
experiment names have the form <serie>:<condition>. Each serie must be ordered according to the
condition times and cannot be interrupted by experiments from other series.
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Experiment data

Each line of the experiment data part has the following form:

<vertex> <value list>

where <vertex> is a word and values are listed in the order corresponding to <experiment list>.

1.4 Input format for classification task

Format for classification task’s input consists of two parts:

Experiment specification

This part follows exactly the same rules as when specifying the input for learning the bayesian network structure.

Experiment data

Each line of the experiment data part has the following form:

<vertex> <value list>

where <vertex> is a word and values are listed in the order corresponding to <experiment 1list>. In this part
we specify only values for regulators. The same names for vertices as while learning the network structure should be
given here.

1.5 Output formats
Suboptimal parents sets

Suboptimal parents sets are written to a file in a simple text format splitted into sections representing the sets of the
parents of each vertex. Each section contains a leading line with the vertex name followed by lines representing its
consecutive suboptimal parents sets. Each of these lines has the form:

<relative probability> <vertex list>

were <relative probability> is the ratio of the set’s posterior probability to the posterior probability of the
empty parents set and <vertex list> contains the elements of the set. Lines are ordered decreasingly according
to <relative probability>.

To show it by example, the section:

c

2.333333 B
1.000000
0.592593 B A

reports 3 most probable parents sets of the vertex C: {B}, 0, { B, A}. Moreover, it states that { B} is 2.333333 times
more probable than the empty set and the corresponding ratio for { B, A} equals 0.592593.

1.4 Input format for classification task 9



SIF format

The SIF (Simple Interaction File), usually contained in files with . sif extension is the simplest of the supported
network formats and carries only information on its topology. In this format, each line represents the fact of a single
interaction. In our case such interaction represents the fact that one variable depends on some other variable. Each
line contains three values:

e Parent variable identifier,

e Interaction label; its type depends on the argument of the —1i option (specifying the number of reported subop-
timal parents sets)
— if =1 (default), +/ - is reported when positive or negative correlation between variables is found
— otherwise, the edge label represents the posterior probability of the interaction represented by the edge
(under the assumption that the true parents set is among the suboptimal ones)

e Child variable identifier.

To show it by example, the file:

A+ B
B-C

describes a network of the following shape:
AL B

Running BNFinder with the same input file and #1 argument of —1i option could result in the file of the form:

.2254
.1560
.8563
.0358
.0247
.9463

W wr QW
oo oo oo
Q QW w

showing that the posterior probabilities of the interactions A — B and B — C' are significantly higher than the other
ones.

The main advantage of this format is that it can be read by the Cytoscape (http://cytoscape.org) software
allowing for quick visualization. It is also trivial to use such data in one’s own software.

BIF format
Bayesian Interchange Format (BIF) is a simple text format dedicated to Bayesian networks. It is supported in some
BN applications (e.g. JavaBayes, Bayes Networks Editor) and may be easily converted with available tools to other

popular formats (including XML formats and BNT format of K. Murphy’s Bayes Net Toolbox). BNfinder writes
learned networks in BIF version 0.15.

Python dictionary

A network saved in <file> as a dictionary may be loaded to your Python environment by
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eval (open(<file>) .read())

The dictionary consists of items corresponding to all network’s vertices. Each item has the following form:

<vertex name> : <vertex dictionary>

Vertex dictionaries have the following items:

"vals’ : <value list>
"pars’ : <parent list>
"type’ : <CPD type>

(only for vertices with noisy CPDs, possible values of <CPD type> are ' and’ and ' or’)

"cpds’ : <CPD dictionary>

The form of the vertex CPD dictionary depends on the vertex type. In the case of noisy CPD, the dictionary items have
the following form:

<vertex name> : <probability>
which means (in the case of noisy-and/-or distribution) that the considered vertex is assigned value 1/0 with
<probability> given all its parents but <vertex name> equal 1/0

In the case of general CPD, the dictionary has items of the following form:

<value vector> : <distribution dictionary>
where <value vector> is a tuple of parents’ values and the distribution of the considered vertex given
<parent list> = <value vector> is defined in <distribution dictionary> in the follow-
ing way:

<value> : <probability>
means that the vertex is assigned <value> with <probability>

None : <probability>
means that the vertex is assigned with <probability> each of its possible values unspecified in a
separate item

None : <probability>
means that given <parent 1ist> equal to a value vector unspecified in a separate item the vertex is assigned
each of its possible values with <probability>

Standard output

When BNfinder is executed from a command line with the option —v, it prints out communicates related to its current
action: loading data, learning regulators of consecutive vertices and writing output files. Moreover, after finishing
computations for a vertex its predicted best parents sets and their scores are reported and after finishing computations
for all vertices BNfinder reports the score and structure of the optimal network.

1.5 Output formats 1



Classification results

The result of bnc command is written to a file with the following format. First line contains only names of experi-
ments:

classes <name list>

Next lines contain information depending on the options chosen. When bnc is executed with —m option, lines with
most likely values for regulatees are printed to a file. All of them have the following form:

<vertex name> <ML value list>

When bnc is executed with —p option, for every regulatee one line with probability of being in the specified class is
written to the output:

<vertex name> <probability list>

2 Tutorial

This short tutorial presents the most common possible uses of the BNfinder software. The first part of this tutorial
is devoted to presenting possible options of the software and the input files on simplistic, synthetic examples. In the
second part, we provide more realistic examples taken from published studies of data for inferring dynamic and static
networks.

In this tutorial, we will assume that you are using the standalone BNfinder application as downloaded from
http://bioputer.mimuw.edu.pl/software/bnf, however if you want, you can also try out these examples with our web-
server at http://bioputer.mimuw.edu.pl/BIAS/BNFinder.

If you have any questions regarding this document or the described software, please contact us: bartek@mimuw.edu.pl
or dojer@mimuw.edu.pl

2.1 Synthetic examples

This section shows on several simple networks, how to prepare datasets and set the parameters for network reconstruc-
tion with BNfinder. The examples include a simple static network, dynamic network and a network requiring setting
prior probabilities.

Simple static network

The first example shows how to use BNfinder to learn a simple static Bayesian network. Let us imagine that we
are analysisng cells under two conditions P1 and P2 and that we are interested whether any of the four genes:
G1,G2,G3, G4 are responding to these conditions. We assume that the true network is depicted in Fig 1, i.e.

e (1 is not dependent on P1 or P2,
e (52 is more likely to be expressed under condition P1,

e (3 is less likely to be expressed under condition P2,

12 2 Tutorial
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Figure 1: Very simple network consisting of 2 regulators and 4 observable regulatees.

e (G4 is more likely to be expressed under any of the conditions P1 or P2.

We have collected 100 datapoints from this network, each consisting of both the state of conditions and the discrete
state of expression of the genes. You can download the input file here data/input1.txt.

If you open the file in a text editor, please note that the first line contains the information on the assumed structure:
#regulators Pl P2

This represents the fact, that we assume that genes (G1..G4) can depend on conditions (P1, P2) and not the other way
around.

You can try to run BNfinder on this file:
bnf -e inputl.txt -n outputl.sif -v

and you will see, that the network topology is reconstructed properly. Also the orientation of the regulatory interactions
is inferred properly as you can see in the output file data/outputi .sif.

You can also try to see whether the optimal network is representative for a larger set of possible suboptimal networks:
bnf -e inputl.txt -n outputlw.sif -v -i 4 -t outputl.txt

This time, in the output file (data/outputiw.sif), the edge labels represent the relative weights of different edges. In the
file data/outputi.ixt, we can find the originally computed weights (i.e. relative probabilities — see manual for details)
for all considered suboptimal sets of parents for all genes.

Instead of fixing the number of returned parents sets (option —i 4) you can specify thresholds for their weights
and/or weight ratios to optimal weights. For example, if you wish to get for each vertex v all parents sets with weights
> max(0.1,0.01 - wepe (v)), Where w,,: (v) denotes the weight of the optimal parents set of v, you can type:

bnf -e inputl.txt -n outputla.sif -v -1 -1 -m 0.1 -o 0.01 -t outputla.txt

We can also try to analyze the data for this network without discretization: data/input2.txt. In this case we need another
directive to indicate that some of the dataseries are continuous:

#continuous Gl G2 G3 G4

2.1 Synthetic examples 13


data/input1.txt
data/output1.sif
data/output1w.sif
data/output1.txt
data/input2.txt

Again if we run BNfinder on this data,

bnf -e input2.txt -n output2.sif -v

we can verify, that the output file contains correct information data/output2.sif.

Simple dynamic network

BNfinder can be used also to infer dynamic Bayesian networks from time series data. In this case it is not necessary
to specify the regulators sets, because DBNs, unlike static networks do not need to be acyclic.

In the first dataset: data/input3.ixt, we have 1 serie of 20 consecutive measurements of gene expression from gene
network depicted in Fig. 2.

G2

Figure 2: Very simple dynamic network consisting of 5 observables

If we run BNfinder on this data:
bnf -e input3.txt -n output3.sif -v

We can see that the program was unable to correctly reconstruct all the edges. Again, if we look at the statistics of
edge occurences in suboptimal networks,

bnf -e input3.txt -n output3.sif -v -1 10 -t output3.txt

we can see that the correct edges are the most commonly occuring ones, but they score lower than empty parent sets.

In this case we can show how perturbational data can be integrated into this framework. We have collected gene expres-
sion from 5 time-series containing one single gene knockout for each of the genes: data/input4.ixt. The perturbations
are noted by including the following lines in the preamble of the data file:

14 2 Tutorial


data/output2.sif
data/input3.txt
data/input4.txt

#perturbed EXP1 G1
#perturbed EXP2 G2
#perturbed EXP3 G3
#perturbed EXP4 G4
#perturbed EXP5 GO

If we run BNfinder on the perturbed data, we can see that all the edges are reconstructed with high confidence.

bnf -e input4d.txt -n outputd.sif -v -1 10 -t outputd.txt

Setting priors

@)

Figure 3: Exemplary network containing dependencies of different strength
In some cases it might be useful to include some prior information on the network structure into the process of
inference. We will illustrate this on an example of a simple network similar to the one described in section 2.1. This
time it is an even simpler network, with 2 conditions and 2 genes as depicted in Fig. 3. Even though topology of the

network is very simple, the problem lies in the fact that the dependence of G2 on P2 is weaker than the dependence
of G1 on P1. This is why if we run our software on the unmodified dataset data/input5.xt,

bnf -e input5.txt -n outputb5.sif -v -i 10 -t outputb.txt

we can see that the program is unable to recover the P2 — (G2 edge. However, if we expect that G2 is responding
weakly to its regulators, we can increase the prior probability of G2 being regulated by any of the factors P1, P2 via
decreasing its weight:

#prioredge G2 0.33 P2 P1
We can see the edge appearing in the result as expected (see data/input6a.txt):

bnf -e inputb6ba.txt -n outputba.sif -v -i 10 -t outputba.txt

Similarly, if we expect, that in general gene response to condition P2 is weaker, we may modify the prior probability
of the condition P2 to be a regulator:
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data/input5.txt
data/input6a.txt

#priorvert 0.33 P2

The result of running BNFinder with this input (data/input6b.txt) is very similar to the previous one:

bnf -e inputéb.txt -n outputéb.sif -v -1 10 -t outputébb.txt

2.2 Examples of published datasets

In this section, we present two more realistic examples of published datasets used for inference of Bayesian networks.
The first one consists of measurements of states of protein signalling network under different perturbations [11]. It’s
been used to infer causal relationships in the form of static Bayesian network.

The second dataset comes from documentation of the Banjo package [12] which can be downloaded from
(http://www.cs.duke.edu/~amink/software/banjo). It consists of 2000 observations describing a relatively large dy-
namic network consisting of 20 nodes. It may be considered a benchmark of the efficiency of our algorithm.

The third dataset is converted from an example attached to the globalMIT software for Bayesian network reconstruc-
tion. It is similar to the second example as it is also generated from a dynamic Bayesian network and consists of 2000
observations of 20 variables. However, in this case the variables are much less interconnected and there are many
self-regulatory loops.

PLEASE NOTE that these datasets are too large to be run through BNFinder webserver. If you would like to
run them, please download the software.

Static Protein signalling network

In this section we present how BNfinder can be applied to a protein signalling network analyzed by Sachs et al [11].
We took the data from the article, and transformed it into the format suitable for BNfinder. We also needed to specify
several properties of the data in the preamble of the file data/sachs.inp

Figure 4: Reconstruction of the protein signalling network. Dark blue arrows represent dependencies found in litera-
ture. Light blue arrows represent dependencies found by BNfinder but not expected by Sachs et al. [11]

Firstly, we needed to specify that the data are continuous measurements:
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data/input6b.txt
http://www.cs.duke.edu/$sim $amink/software/banjo
data/sachs.inp

#continuous praf pmek plcg PIP2 PIP3 p44/42 pakts473 PKA PKC P38 pijnk

Then, we needed to specify the expected layer structure of the signalling pathway we are studying:

#regulators plcg
#regulators PIP3
fregulators PIP2
#regulators PKC
#regulators PKA
#regulators praf
#regulators pjnk pmek P38
#regulators pd4/42
#regulators pakts473

Then we needed to specify which of the proteins are affected by different perturbations.

#perturbed cd3cd28psitect_0 PIP2
#perturbed cd3cd28psitect_1 PIP2
#perturbed cd3cd28psitect_2 PIP2

#perturbed cd3cd28g0076_0 PKC
#perturbed cd3cd28g0076_1 PKC
#perturbed cd3cd28g0076_2 PKC

When we finally run the BNfinder:

bnf -e sachs.inp -n sachs.sif -v

We obtain the network presented in Fig. 4. As we can see, the topology is quite consistent with the literature data. Out
of 17 expected edges, BNfinder recovers 11 correctly.

Dynamic Bayesian network

This is a dataset of substantial size which is used [14] to assess the performance of our inference algorithm. The input
dataset (data/input7.txt) consists of 2000 measurements of 20 variables and it takes approximately 3 hours to compute
it on a modern PC (2.4Ghz Intel Core 2 duo).

We can run BNfinder with the following command (note that we are using the —1 option to limit the number of parents
to 5):

bnf -e input7.txt -n output7.sif -v -1 5 —-txt output7.txt

In Fig. 5 we can see part of the network reconstructed by BNfinder. All the edges reported by Banjo are also present in
the optimal network (dark blue). The optimal network contains a number of additional edges, not reported by Banjo.

If you want to see how much faster the MDL algorithm is, you can also run BNfinder with the following command:

bnf -s MDL -e input7.txt -n output7/mdl.sif -v -1 5 —-txt output7mdl.txt

2.2 Examples of published datasets 17


data/input7.txt

Figure 5: The optimal network reconstructed by BNfinder from the dynamic benchmark dataset. The edges reported
also by Banjo are shown in dark blue.

Dynamic network containing self-regulatory loops

In this example, we can utilize both the —g 1 option for allowing self-regulations as well as the —s MIT option for
using the MIT score.

bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -txt output8.txt -c output8.cpd -g 1

One additional parameter that is unique to the MIT score is the significance level « of the x? distribution (-a). The
default level for « is .9999, but we can increase/decrease it if we want to see fewer/more edges respectively.

For example, setting the level alpha to a higher value should give us more edges in the result:

bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -a .9 -g 1l

Using multiple processors for faster computations

Since most current computers are equipped with multiple processors, we can take advantage of that fact to speed up
BNFinder computation. Especially for large datasets, such as the ones described in previous sections, we can take full
advantage of the parallell computation. For example, if we want BNfinder to run on 4 CPUs in parallell, we can use
the ~k 4 option as in the following example:

bnf -s MIT -e input8.txt -n output8.sif -v -1 3 -a .9 -g 1 -k 4
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2.3 Example of classification with BNfinder

bnf-cv and bnc tools can be used to solve classification tasks with classifier based on Bayesian networks. The
former is used to perform a cross-validation test and the later to classify a dataset when you already have a classifier.
In our example we will try to solve the following problem: we have points within the unit square; our positive set
consists of those that are located in top-right and bottom-left corners, i.e. x +y > 1.8 or x + y < 0.2. The training
set consists of 100 positive and 100 negative examples. They are visualised in the following Fig. 6. The data can be
downloaded from here (data/training_set.txt). We marked x and y as continuous regulators. We will classify only one
feature, but it is possible to perform cross-validation and classification procedure for more variables. All variables not
marked as regulators are treated as variables to be explained by classifier.

02 s

Figure 6: The training set used in the classification example. Positive examples are colored blue.

To perform a 10-fold cross-validation we can use the following command:

bnf-cv -e training_set.txt -c net.cpd -k 10 -r ROC.pdf

As a result we obtain 10 files (net.cpd0, net.cpdl, ..., net.cpd9) containing networks in cpd format corresponding to
respective folds of the cross-validation. Every execution of foregoing command will bring different results, because a
splitinto 10 sets is done randomly. In the result file ROC.pdf there is a ROC plot showing the results of cross-validation
(see 7). Further results are printed to the standard output and contains (among others) information about regulators
taken to each of 10 classifiers and AUC measure of each classifier’s performance.

To perform classification task on a test dataset we can use any of the nets obtained from cross-validation task but
usually it is better to train a classifier on the whole training dataset. It can be done by the following command:

bnf —-e training_set.txt -c net.cpd

We will test out classifier on this (data/test_set.txt) dataset which consists of 1000 points from the unit square. Now,
by using the bnc tool we can obtain the classification. In the Fig. 8 we can see the result of classifying our test dataset
by classifier in the file net.cpd (we used 0.63 probability threshold to generate the plot):
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data/trainingprotect unhbox voidb@x penalty @M hskip z@skip T1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip set.txt
data/testprotect unhbox voidb@x penalty @M hskip z@skip T1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip set.txt
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Figure 7: The Receiver operating characteristics curve for 10-fold cross-validation. The thick curve shows the average
performance of classifiers.

bnc -o result.cls -p 1 -c net.cpd -d test_set.txt
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Figure 8: The result of classification. Blue and red points represent true positives and negatives. There was no false
negatives. False positives are colored light red.
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We can also find the most probable class for corners for every experiment by executing:

bnc -o result.cls -m 1 -c net.cpd -d test_set.txt

Finally, by executing
bnf-cv -e training_set.txt -k 1 -r ROC.pdf

command one can generate a colored plot of classifier trained on the whole training set. Different colors (explained
on the right side of the picture) indicate probability thresholds above which we classify example as a positive one. An
example of such a plot can be seen on the Fig. 9.
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Figure 9: The effect of ploting ROC curve from 1-fold cross-validation.

3 Supplementary methods

In the present section we give a brief exposition of the algorithm implemented in BNFinder and its computational cost
for two generally used scoring criteria: Minimal Description Length and Bayesian-Dirichlet equivalence. For a fuller
treatment, including detailed proofs, we refer the reader to [3, 4].

3.1 Polynomial-time exact algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set of discrete random variables X =
{X1,...,X,}. The representation consists of two components:
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e adirected acyclic graph G = (X, E) encoding conditional (in-)dependencies
e a family 6 of conditional distributions P(X;|Pa;), where

Pa, ={Y e X|(V, X;) € E}

The joint distribution of X is given by

P(X) = ﬁP(Xi\PaZ-) (1)

i=1

The problem of learning a BN is understood as follows: given a multiset of X-instances D = {x1,...,xy} find
a network graph G that best matches D. The notion of a good match is formalized by means of a scoring function
S(G : D) having positive values and minimized for the best matching network. Thus the point is to find a directed
acyclic graph G with the set of vertices X minimizing S(G : D).

The BNFinder program is devoted to the case when there is no need to examine the acyclicity of the graph, for example:

e When dealing with dynamic Bayesian networks. A dynamic BN describes stochastic evolution of a set of random
variables over discretized time. Therefore conditional distributions refer to random variables in neighboring time
points. The acyclicity constraint is relaxed, because the “unrolled” graph (with a copy of each variable in each
time point) is always acyclic (see [6] for more details). The following considerations apply to dynamic BNs as
well.

e In case of static Bayesian Networks, the user has to supply the algorithm with a partial ordering of the vertices,
restricting the set of possible edges only to the ones consistent with the ordering. BNFinder lets the user to
divide the set of variables into an ordered set of disjoint subsets of variables, where edges can only exist between
variables from different subsets and they have to be consistent with the ordering. If such ordering is not known
beforehand, one can try to run BNFinder with different orderings and choose a network with the best overall
score.

In the sequel we consider some assumptions on the form of a scoring function. The first one states that S(G : D)
decomposes into a sum over the set of random variables of local scores, depending on the values of a variable and its
parents in the graph only.

Assumption 1 (additivity) S(G : D) = > | s(X;,Pa; : D|{x,}upa, ), Wwhere D]y denotes the restriction of D to
the values of the members of Y C X.

When there is no need to examine the acyclicity of the graph, this assumption allows to compute the parents set of
each variable independently. Thus the point is to find Pa; minimizing s(X;, Pa; : D|{ Xi}upai) for each 1.

Let us fix a dataset D and a random variable X. We denote by X' the set of potential parents of X (possibly smaller
than X due to given constraints on the structure of the network). To simplify the notation we continue to write s(Pa)
for s(X,Pa: D|{xiupa)-

The following assumption expresses the fact that scoring functions decompose into 2 components: g penalizing the
complexity of a network and d evaluating the possibility of explaining data by a network.

Assumption 2 (splitting) s(Pa) = g(Pa) + d(Pa) for some functions g,d : P(X) — R* satisfying Pa C Pa’ =
9(Pa) < g(Pa)

This assumption is used in the following algorithm to avoid considering networks with inadequately large component
g.

Algorithm 1
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1. Pa:=0
2. for each P C X' chosen according to g(P)

(a) if s(P) < s(Pa) then Pa := P
(b) if g(P) > s(Pa) then return Pa; stop

In the above algorithm choosing according to g(P) means choosing increasingly with respect to the value of the
component g of the local score.

Theorem 1 Suppose that the scoring function satisfies Assumptions 1-2. Then Algorithm 1 applied to each random
variable finds an optimal network.

A disadvantage of the above algorithm is that finding a proper subset P C X’ involves computing g(P’) for all
C-successors P’ of previously chosen subsets. It may be avoided when a further assumption is imposed.

Assumption 3 (uniformity) |Pa| = |Pa’| = g(Pa) = g(Pa’).

The above assumption suggests the notation §(|Pa|) = g(Pa). The following algorithm uses the uniformity of g to
reduce the number of computations of the component g.

Algorithm 2

1. Pa:=0
2. forp=1ton
(a) if §(p) > s(Pa) then return Pa; stop

(b) P = argmingycx:.|y|=p}s(Y)
(c) if s(P) < s(Pa) then Pa:=P

Theorem 2 Suppose that the scoring function satisfies Assumptions 1-3. Then Algorithm 2 applied to each random
variable finds an optimal network.

3.2 Minimal Description Length

The Minimal Description Length (MDL) scoring criterion originates from information theory [8]. A network N is
viewed here as a model of compression of a dataset D. The optimal model minimizes the total length of the description,
i.e. the sum of the description length of the model and of the compressed data. MDL is effectively equivalent to
Bayesian Information Criterion (BIC) (see [9]), which approximates Bayesian scores (see next section) and is also
applicable to continuous data.

Let us fix a dataset D = {x1,...,xy} and a random variable X. Recall the decomposition s(Pa) = g(Pa) + d(Pa)
of the local score for X. In the MDL score g(Pa) stands for the length of the description of the local part of the network
(i.e. the edges ingoing to X and the conditional distribution P(X|Pa)) and d(Pa) is the length of the compressed
version of X -values in D.
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Let ky denote the cardinality of the set Vy of possible values of the random variable Y € X. Thus we have

log N
g(Pa) = |Pallogn + T(kx -1 H ky
YePa

where @ is the number of bits we use for each numeric parameter of the conditional distribution. This formula
satisfies Assumption 2 but fails to satisfy Assumption 3. Therefore Algorithm 1 can be used to learn an optimal

network, but Algorithm 2 cannot.

However, for many applications we may assume that all random variables have the same value set V of cardinality k.
In this case we obtain the formula

log N
g(Pa) = |Pa|logn + &(k — 1)k/Pal

which satisfies Assumption 3. For simplicity, we continue to work under this assumption.

Compression with respect to the network model is understood as follows: when encoding the X -values, the values of
Pa-instances are assumed to be known. Thus the optimal encoding length is given by

d(Pa) = N - H(X|Pa)

where H(X|Pa) = — > 1, >, cypa P(v, V) log P(v|v) is the conditional entropy of X given Pa (the distributions
are estimated from D).

Since all the assumptions from the previous section are satisfied, Algorithm 2 may be applied to learn the optimal
network. Let us turn to the analysis of its complexity.

Theorem 3 The worst-case time complexity of Algorithm 2 for the MDL score is O(n'°2: N N log, N).

3.3 Bayesian-Dirichlet equivalence

The Bayesian-Dirichlet equivalence (BDe) scoring criterion originates from Bayesian statistics [1]. Given a dataset D
the optimal network structure G maximizes the posterior conditional probability P(G|D). We have

P(G|D) o P(9)P(D|9) :P(g)/P(DIQﬁ)P(@Ig)d@

where P(G) and P(0|G) are prior probability distributions on graph structures and conditional distributions’ parame-
ters, respectively, and P(D|G, #) is evaluated due to (1).

Heckerman et al. [7], following Cooper and Herskovits [1], identified a set of independence assumptions making
possible decomposition of the integral in the above formula into a product over X. Under this condition, together with
a similar one regarding decomposition of P(G), the scoring criterion

S(G : D) = —log P(G) — log P(DI|G)

obtained by taking — log of the above term satisfies Assumption 1. Moreover, the decomposition s(Pa) = g(Pa) +
d(Pa) of the local scores appears as well, with the components g and d derived from — log P(G) and — log P(D|G),
respectively.

The distribution P((X,E)) o< [] g ae With penalty parameters 0 < a, < 1 is commonly used as a prior over the
network structures. BNFinder sets oy, x) = 1 /ky by default. This choice results in the function

g(Pa) = Y logky
Y ePa

satisfying Assumptions 2. If we moreover assume that all random variables have the same value set V of cardinality
k, we obtain the function
g(Pa) = |Pallogk
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satisfying also Assumption 3. For simplicity, we continue to work under this assumption.

However, it should be noticed that there are also used priors which satisfy neither Assumption 2 nor 3, e.g. P(G)
a2(G.90) where A(G, Gp) is the cardinality of the symmetric difference between the sets of edges in G and in the prior
network Go.

The Dirichlet distribution is generally used as a prior over the conditional distributions’ parameters. It yields

H F(Zvev(va +N1)v

d(Pa) = log T(> ey Hov) H I( H + Nu V)

veyPal

where I' is the Gamma function, N, denotes the number of samples in D with X = v and Pa = v, and H,  is the
corresponding hyperparameter of the Dirichlet distribution.

Setting all the hyperparameters to 1 yields

d(Pa) = log H (k=1+ ZUEV Now) H N -

veyIPal (k

= Y <log(k—1—|— ST Nyy)! —log(k — 1) '—Zlongv>

veVIPal veV

where & = |V|. For simplicity, we continue to work under this assumption (following Cooper and Herskovits [1]).
The general case may be handled in a similar way.

The following result allows to refine the decomposition of the local score into the sum of the components g and d.

Proposition 1 Define dpin, = ), ¢, (log(k — 14 Ny,)! —log(k — 1)! —log N,!), where N, denotes the number of
samples in D with X = v. Then d(Pa) > d;, for each Pa € X.

By the above proposition, the decomposition of the local score given by s(Pa) = ¢'(Pa) + d’(Pa) with the compo-
nents ¢'(Pa) = g(Pa) + dnin and d'(Pa) = d(Pa) — d,,, satisfies all the assumptions required by Algorithm 2.
Let us turn to the analysis of its complexity.

Theorem 4 The worst-case time complexity of Algorithm 2 for the BDe score with the decomposition of the local
score given by s(Pa) = ¢/(Pa) + d'(Pa) is O(n™ °8a-1 kN2 log_ _, k).

3.4 Mutual information test

The Mutual Information Test (MIT) scoring criterion originates from the concept of mutual information, belonging to
the family of measures based on information theory [2]. Briefly speaking, this method combines mutual information
measure and a statistical independence test based on the chi-square dustribution assosiated with it. The goodness of a
fit of the particular network is computed as the total mutual information between each node and its parents. This score
is then penalized by a term corresponding to the degree of statistical significance of the shared information.

Let D be a dataset with N observations, G be the dynamic bayesian network. Let X = {X7, ..., X, } be the set of n
variables, with each of it corresponding to {r1, ..., 7, } discrete states. Let’s denote the set of parents of X; in G with
corresponding {71, ..., s, } discrete states as Pa; = {Xj1, ..., X;s, }. Then the MIT score is defined as follows [13]:

n

SG:D)= >  {2N-I(X;Pa) wam}

i=0;Pa; #0

In this formula I (X;, Pa;) denotes the mutual information between X; and its parents as estimated from D and defined

) =3 S stwores ()

yeY zeX
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Xalio;(;) 18 the chi-square distribution at significance level 1 — a. It is defined as the value such that

PO (lij) < Xatj) = a

The term [;,, ;) denotes the degrees of freedom and is defined as

- )
|- (ri — 1)(%‘07:(1') -1) Hi:1 Tios(k), J = 2.., 8.
105 (4) (7“1‘ _ 1)(7"iai(j) — 1)7 j=1

where o; = {0;(1),...,0:(s;)} is any permutation of the index set {1...s;} of Pa,; such that, the number of states of
the variables decreases with the increasing position in the permutation.

Recall the decomposition Sy (Pa;) = darrr(Pa;) + garrr (Pa;). In this case:

d]\/][T(PaZ‘) =2N - I(XZ,X) — 2N - I(X“Paz)

gurr(Pa;) = Z Xal;o:(j)
Jj=1

Roughly, dj;;r measures the accuracy of representing the joint distribution of D by G while gp;rr measures the
complexity of this representation. This decomposition satisfies Assumption 2. However, MIT score defined in this
way does not satisfy Assumption 3. Therefore, we introduce an assumption that all the variables have the same number
of discrete states.

Assumption 4 (uniformity) All variables in X have the same number of discrete states k.

Under this assumption it can be easily shown that g,/ satisfies Assumption 3.

Theorem 5 [10] The worst-case time complexity of Algorithm 2 for the MIT score under the assumption of the vari-
ables uniformity is polynomial in the number of variables.

3.5 Continuous variables

All the scoring functions implemented in BNFinder (MDL, BDe and MIT) were originally designed for discrete vari-
ables. In order to avoid arbitrary discretization of continuous data we adapted them to deal with continuous variables
directly. Moreover, our method works also with heterogenous data sets joining together discrete and continuous vari-
ables.

The distribution of each continuous variable X is assumed to be a mixture of two normal distributions. Mixture
components correspond to the two possible values (low and high) of a related hidden discrete variable X’ and X is
viewed as its observable reflection. Consequently, the conditional distributions of X is given by:

P(X|Pa)= > > P(X|X' =v)P(X' = v|Pa’ = v)P(Pa’ = v|Pa)
vE{low,high} ve{low,high}IPal

Conditional distributions P(X|X") are assumed to be independent for all variables X. Thus we estimate their param-
eters separately for each X in a preprocessing step. Estimation is based on data clustering with the k-means algorithm
(k = 2, cutting the set of variable values in the median yields initial clusters). Due to the independence assumption,
these parameters enable us to calculate also P(Pa’|Pa) = [], .p, P(Y'|Y). Thus the space of possible conditional
distributions on continuous variables forms a family of Gaussian mixtures, parameterized by P(X’|Pa’), conditional
distributions on corresponding discrete variables.

From a technical point of view, BNFinder learns optimal network structures for these discrete variables, using scoring
functions adapted to handle distributions on variable values instead of their determined values (expected values of
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original scores are computed). For continuous variables it gives optimal Bayesian networks from among all networks
with conditional probability distributions belonging to the above defined family of Gaussian mixtures.

The following results present the complexity of our algorithm with continuous MDL and BDe scoring functions.
Theorem 6 The worst-case time complexity of Algorithm 2 for the continuous MDL score is O(n'°8 N N2).

Theorem 7 The worst-case time complexity of Algorithm 2 for the continuous BDe score with the decomposition of
N
the local score given by s(Pa) = ¢'(Pa) + d'(Pa) is O((2n)es«=T N).

3.6 Network density control

Recall that scoring functions decompose into 2 components: g penalizing the complexity of a network and d evaluating
the possibility of explaining data by a network. The balance between these components influences the reliability of
reconstructed relationships between variables — high g-to-d ratio results in high specificity, while low g-to-d ratio
yields high sensitivity.

BNFinder has 3 mechanisms controlling this balance:

1. Option —d directly multiplies g-to-d ratio by a uniform factor for all pairs of variables.

2. Option —r sets g-to-d ratios for all edges according to specified proportion of false positive edges (type I error
rate). It is particularly useful for heterogeneous sets of potential parents (continuous and discrete, discrete with
varying levels of discretization), when different types of variables require specific treatment.

3. Input dataset preamble commands #prioredge and #priorvert modify g-to-d ratios for specified network
edges. They are intended to incorporate into the learning process prior knowledge regarding possible variable
dependencies. This method may be combined with one of previous mechanisms.

Option —d modifies g-to-d ratio by virtual dataset multiplication. Remaining two mechanisms adjust components
g of the scoring function. It is done through redefining the formula for g by raising parameters ky, the number of
discretization levels of a potential parent Y to appropriate powers wy,x (in the case of BDe, it is just a modification
of a prior distribution over network structures). Exponents wy,x are either adjusted to required type I error rate or
specified in the preamble of a dataset. They must satisfy wy, x > 0, default values wy,x = 1 result in the original
formula for g component.

The control of type I error rate is based on a statistical model for 1-element set of potential parents and extrapolated to
all sets. In the 1-element case there are only 2 potential parent sets: () and {Y}, where Y is the only potential parent
of considered regulated variable X. First, BNFinder calculates the required type I error probability for edge (Y, X).
When no prior distribution on the network structure is specified in the dataset preamble, all edge error probabilities
equal the requested type I error rate. Otherwise they are weighted according to the inverses of prior parameters.

Under a null hypothesis Hy that variables X and Y are independent, type I error occurs when s({Y'}) < s(0). We
define Zy x = d({Y'}) — d(0) and zy,x = g(0) — g({Y'}). Thus s({Y'}) < s(0) if and only if Zy,x < zy,x. Note
that Zy, x is a function of dataset values of random variables X and Y, so it is a random variable too. On the other
hand, 2y x is independent of the data and monotonically depends on wy. x .

BNFinder randomly permutes values of Y in the dataset and calculates Zy,x for each permutation. The number
of permutations is chosen according to requested type I error probability and the dataset size. Moreover, it may be
manually shrunk to avoid exhaustive computations. The estimate of cumulative distribution function for Zy, x under
Hy assumption is derived from calculated values and d,;,;,, — d(), the lower bound on Zy x . Based on this distribution
BNFinder adjusts wy, x to yield P(Zy, x < zy,x|Ho) equal to the required type I error probability for edge (Y, X).
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