
Products.LDAPConnector
Documentation

Release 1.0

Jens Vagelpohl

April 14, 2010

CONTENTS

1 Narrative documentation 3
1.1 Installation . 3
1.2 Usage from the Zope ZMI . 3
1.3 Usage from Python . 8
1.4 String encoding issues . 9
1.5 Development . 10
1.6 Changelog for Products.LDAPConnector . 11

2 API documentation 13
2.1 Interfaces . 13

3 Support 15

4 Indices and tables 17

Index 19

i

ii

Products.LDAPConnector Documentation, Release 1.0

Products.LDAPConnector provides an abstraction layer on top of python-ldap. It offers a connection object
with simplified methods for inserting, modifying, searching and deleting records in the LDAP directory tree.
Failover/redundancy can be achieved by supplying connection data for more than one LDAP server.

CONTENTS 1

Products.LDAPConnector Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

NARRATIVE DOCUMENTATION

Narrative documentation explaining how to use Products.LDAPConnector.

1.1 Installation

You will need Python version 2.4 or better to run Products.LDAPConnector. Development of
Products.LDAPConnector is done primarily under Python 2.6, so that version is recommended.

Warning: To successfully install Products.LDAPConnector, you will need setuptools installed on
your Python system in order to run the easy_install command.

It is advisable to install Products.LDAPConnector into a virtualenv in order to obtain isolation
from any “system” packages you’ve got installed in your Python version (and likewise, to prevent
Products.LDAPConnector from globally installing versions of packages that are not compatible with your
system Python).

After you’ve got the requisite dependencies installed, you may install Products.LDAPConnector into your
Python environment using the following command:

$ easy_install Products.LDAPConnector

If you use zc.buildout you can add Products.LDAPConnector to the necessary eggs section to have
it pulled in automatically.

When you easy_install Products.LDAPConnector, the python-ldap libraries are installed if they are
not present.

1.2 Usage from the Zope ZMI

The following screen shots show how to use an LDAPConnector instance through the web in the Zope ZMI.

To create a new LDAPConnector instance, choose LDAPConnector from the drop-down list at the top right.

3

http://python.org

Products.LDAPConnector Documentation, Release 1.0

On the initial view you can set the ID and title.

Once the instance is created you will end up on the Configuration tab where you can refine the configuration:

• The (optional) title can be chosen freely.

• The LDAP login and LDAP password fields allow you to specify LDAP credentials that will be used to
authenticate to the LDAP servers set up in the next step. The same credentials will be used for all physical
LDAP server connections set up on the Servers ZMI tab.

• LDAP servers store text values in specific text encodings, usually UTF-8. You need to specify the encoding

4 Chapter 1. Narrative documentation

Products.LDAPConnector Documentation, Release 1.0

name in the LDAP server string encoding field.

• The API string encoding field is used to specify the text encoding applied to values returned by the LDAP-
Connector instance, as well as the expected encoding for values passed in using the instance’s API. If you
leave this field empty no encoding will be used, which means unencoded unicode.

• If you select the Read-only checkbox no writes to the LDAP server will be allowed.

On the Servers tab you define physical server connections. By defining more than one server you can achieve
redundancy, which means the LDAPConnector will be usable even if one server is no longer reachable or returns
an error.

To set up a server connection you need to provide the following:

• a hostname, IP of a filesystem path for UNIX domain sockets

• a port number (this field is ignored when using UNIX domain sockets)

• the protocol to use, which can be ldap for unencrypted data transmission, ldaps for encrypted traffic
using LDAP over SSL, ldaptls for negotiated encryption through the standard unencrypted port, or
ldapi when using UNIX domain sockets

• a connection timeout value in seconds for the initial connection setup, after which a server is considered
dead

• an operations timeout value in seconds to set a maximum allowable time for any operation, after which a
server is considered dead

1.2. Usage from the Zope ZMI 5

Products.LDAPConnector Documentation, Release 1.0

When you have set up physical server connections you can see their status on the Server tab.

With servers defined and at least one of them showing status OK you are ready to run a simple search test. The
Test tab requires basic knowledge about your LDAP tree structure so you can pick a node for the Search base
value. When executing the search you will see the results listed at the bottom.

6 Chapter 1. Narrative documentation

Products.LDAPConnector Documentation, Release 1.0

By clicking on the plus icon or the DN the records can be examined in detail.

1.2. Usage from the Zope ZMI 7

Products.LDAPConnector Documentation, Release 1.0

Search records are cached. On the Cache tab you can set the number of seconds each search and its results are
cached. You can also view what’s in the cache. From here, you can delete specific cache entries or flush the whole
cache.

The cache works as a negative cache as well. Searches that return error messages or no results at all will be cached
to avoid unnecessary work.

1.3 Usage from Python

These samples assume that you have a LDAPConnector instance set up already with ID conn.

Adding a server definition:

>>> conn.addServer(’localhost’, ’1389’, ’ldap’)

To work with the connection object you need to make sure that a LDAP server is available on the provided host
and port.

Now we will search for a record that does not yet exist, then add the missing record and find it when searching
again:

>>> conn.search(’ou=users,dc=localhost’, fltr=’(cn=testing)’)
{’exception’: ’’, ’results’: [], ’size’: 0}
>>> data = { ’objectClass’: [’top’, ’inetOrgPerson’]
... , ’cn’: ’testing’
... , ’sn’: ’Lastname’
... , ’givenName’: ’Firstname’
... , ’mail’: ’test@test.com’
... , ’userPassword’: ’5ecret’
... }

8 Chapter 1. Narrative documentation

Products.LDAPConnector Documentation, Release 1.0

>>> conn.insert(’ou=users,dc=localhost’, ’cn=testing’, attrs=data, bind_dn=’cn=Manager,dc=localhost’, bind_pwd=’secret’)
>>> conn.search(’ou=users,dc=localhost’, fltr=’(cn=testing)’)
{’exception’: ’’, ’results’: [{’dn’: ’cn=testing,ou=users,dc=localhost’, ’cn’: [’testing’], ’objectClass’: [’top’, ’inetOrgPerson’], ’userPassword’: [’5ecret’], ’sn’: [’Lastname’], ’mail’: [’test@test.com’], ’givenName’: [’Firstname’]}], ’size’: 1}

We can edit an existing record:

1 >>> changes = {’givenName’: ’John’, ’sn’: ’Doe’}
2 >>> conn.modify(’cn=testing,ou=users,dc=localhost’, attrs=changes, bind_dn=’cn=Manager,dc=localhost’, bind_pwd=’secret’)
3 >>> conn.search(’ou=users,dc=localhost’, fltr=’(cn=testing)’)
4 {’exception’: ’’, ’results’: [{’dn’: ’cn=testing,ou=users,dc=localhost’, ’cn’: [’testing’], ’objectClass’: [’top’, ’inetOrgPerson’], ’userPassword’: [’5ecret’], ’sn’: [’Doe’], ’mail’: [’test@test.com’], ’givenName’: [’John’]}], ’size’: 1}

As the last step, we will delete our testing record:

1 >>> conn.delete(’cn=testing,ou=users,dc=localhost’, bind_dn=’cn=Manager,dc=localhost’, bind_pwd=’secret’)
2 >>> conn.search(’ou=users,dc=localhost’, fltr=’(cn=testing)’)
3 {’exception’: ’’, ’results’: [], ’size’: 0}

The Interfaces page contains more information about the connection APIs.

1.4 String encoding issues

LDAP servers expect values sent to them in specific string encodings. Standards-compliant LDAP servers use
UTF-8. They use the same encoding for values returned e.g. by a search. This server-side encoding may not be
convenient for communicating with the Products.LDAPConnectorAPI itself. For this reason the server-side
encoding and API encoding can be set individually on connection instances using the attributes ldap_encoding
and api_encoding, respectively. The connection instance handles all string encoding transparently.

By default, instances use UTF-8 as ldap_encoding and ISO-8859-1 (Latin-1) as api_encoding. You can
assign any valid Python codec name to these attributes. Assigning an empty value or None means that unencoded
unicode strings are used.

If you receive error messages and tracebacks for either UnicodeDecodeError or UnicodeEncodeError
while searching for records on the ZMI Test tab or while displaying LDAPConnector search results in your own
web application using Zope Page Templates, you have several places to look at:

• Make sure the LDAPConnector ldap_encoding value, visible on the ZMI Configuration tab as
LDAP server string encoding, is set to the encoding required by your LDAP server. For most servers this
will be UTF-8. With Active Directory this may differ.

• Check the text encoding used by your web application. It will usually be something like iso-8859-1
or utf-8. Make sure it matches the LDAPConnector api_encoding value, which is set on the ZMI
Configuration tab as API string encoding. If you leave this field empty unencoded unicode is expected
by the API and will be returned by it.

• If your browser does not send along its preferred character encoding when requesting data from your
server (request header HTTP_ACCEPT_CHARSET) Zope may pick the wrong text encoding. Safari-
based browsers like Safari or Omniweb show this behavior. You can influence which encoding gets
picked by overriding a ZCML registration in your site’s configuration. To use the encoding defined as
management_page_charset in your site, add the following to your site configuration:

<utility
provides="Products.PageTemplates.interfaces.IUnicodeEncodingConflictResolver"
component="Products.PageTemplates.unicodeconflictresolver.StrictUnicodeEncodingConflictResolver"
/>

1.4. String encoding issues 9

Products.LDAPConnector Documentation, Release 1.0

1.5 Development

1.5.1 Getting the source code

The source code is maintained in the Dataflake Subversion repository at http://svn.dataflake.org. To check out the
trunk:

svn co http://svn.dataflake.org/svn/Products.LDAPConnector/trunk/

You can also browse the code online at http://svn.dataflake.org/viewvc/Products.LDAPConnector.

When using setuptools or zc.buildout you can use the following URL to retrieve the latest development code as
Python egg:

http://svn.dataflake.org/svn/Products.LDAPConnector/trunk#egg=Products.LDAPConnector

1.5.2 Bug tracker

For bug reports, suggestions or questions please use the dataflake bug tracker at
https://bugs.launchpad.net/products.ldapconnector.

1.5.3 Setting up a development sandbox and testing

Once you’ve obtained a source checkout, you can follow these instructions to perform various development tasks.
All development requires that you run the buildout from the package root directory:

$ python bootstrap.py
$ bin/buildout

Once you have a buildout, the tests can be run as follows:

$ bin/test

1.5.4 Building the documentation

The Sphinx documentation is built by doing the following from the directory containing setup.py:

$ cd docs
$ make html

1.5.5 Making a release

The first thing to do when making a release is to check that the ReST to be uploaded to PyPI is valid:

$ bin/docpy setup.py --long-description | bin/rst2 html \
--link-stylesheet \
--stylesheet=http://www.python.org/styles/styles.css > build/desc.html

Once you’re certain everything is as it should be, the following will build the distribution, upload it to PyPI,
register the metadata with PyPI and upload the Sphinx documentation to PyPI:

$ bin/buildout -o
$ bin/docpy setup.py sdist register upload upload_sphinx --upload-dir=docs/_build/html

10 Chapter 1. Narrative documentation

http://svn.dataflake.org/
http://svn.dataflake.org/viewvc/Products.LDAPConnector/
https://bugs.launchpad.net/products.ldapconnector

Products.LDAPConnector Documentation, Release 1.0

The bin/buildout will make sure the correct package information is used.

1.6 Changelog for Products.LDAPConnector

1.6.1 1.0 (2010-04-14)

• initial release

1.6. Changelog for Products.LDAPConnector 11

Products.LDAPConnector Documentation, Release 1.0

12 Chapter 1. Narrative documentation

CHAPTER

TWO

API DOCUMENTATION

API documentation for Products.LDAPConnector.

2.1 Interfaces

Instances of Products.LDAPConnector derive from the dataflake.ldapconnection.connection
module’s LDAPConnection class and implement the interface dataflake.ldapconnection.interfaces.ILDAConnection.
They mix in Zope persistence to allow storage in the ZODB object database.

interface dataflake.ldapconnection.interfaces.ILDAPConnection
ILDAPConnection interface

ILDAPConnection instances provide a simplified way to talk to a LDAP server. They allow defining one or
more server connections for automatic failover in case one LDAP server becomes unavailable.

insert(base, rdn, attrs=None, bind_dn=None, bind_pwd=None)
Insert a new record

The record will be inserted at base with the new RDN rdn. attrs is expected to be a key:value mapping
where the value may be a string or a sequence of strings. Multiple values may be expressed as a single
string if the values are semicolon-delimited. Values can be marked as binary values, meaning they are
not encoded in the encoding specified as the server encoding before being sent to the LDAP server, by
appending ‘;binary’ to the key.

In order to perform the operation using credentials other than the credentials configured on the instance
a DN and password may be passed in.

addServer(host, port, protocol, conn_timeout=-1, op_timeout=-1)
Add a server definition

protocol can be any one of ldap (unencrypted traffic), ldaps (encrypted traffic to a separate port),
ldaptls (sets up encrypted traffic on the normal unencrypted port), or ldapi (trafic through a
UNIX domain socket on the file system).

The conn_timeout argument defines the number of seconds to wait until a new connection attempt
is considered failed, which means the next server is tried if it has been defined. -1 means “wait
indefinitely”,

The op_timeout argument defines the number of seconds to wait until a LDAP server operation is con-
sidered failed, which means the next server is tried if it has been defined. -1 means “wait indefinitely”.

If a server definition with a host, port and protocol that matches an existing server definition is added,
the new values will replace the existing definition.

modify(dn, mod_type=None, attrs=None, bind_dn=None, bind_pwd=None)
Modify the record specified by the given DN

mod_type is one of the LDAP modification types as declared by the python-ldap-module, such as
ldap.MOD_ADD, PUrl(urlscheme=protocol, hostport=hostport) provided, the modification type is
guessed by comparing the current record with the attrs mapping passed in.

13

Products.LDAPConnector Documentation, Release 1.0

attrs is expected to be a key:value mapping where the value may be a string or a sequence of strings.
Multiple values may be expressed as a single string if the values are semicolon-delimited. Values can
be marked as binary values, meaning they are not encoded as UTF-8 before sending the to the LDAP
server, by appending ‘;binary’ to the key.

In order to perform the operation using credentials other than the credentials configured on the instance
a DN and password may be passed in.

search(base, scope=2, fltr=’(objectClass=*)’, attrs=None, convert_filter=True, bind_dn=None,
bind_pwd=None)

Perform a LDAP search

The search base is the point in the tree to search from. scope defines how to search and must be
one of the scopes defined by the python-ldap module (ldap.SCOPE_BASE, ldap.SCOPE_ONELEVEL
or ldap.SCOPE_SUBTREE). By default, ldap.SCOPE_SUBTREE is used. What to search for is de-
scribed by the filter argument, which must be a valid LDAP search filter string. If only certain record
attributes should be returned, they can be specified in the attrs sequence.

If the search raised no errors, a mapping with the following keys is returned:

•results: A sequence of mappings representing a matching record

•size: The number of matching records

The results sequence itself contains mappings that have a dn key containing the full distinguished
name of the record, and key/values representing the records’ data as returned by the LDAP server.

In order to perform the operation using credentials other than the credentials configured on the instance
a DN and password may be passed in.

removeServer(host, port, protocol)
Remove a server definition

Please note: I you remove the server definition of a server that is currently being used, that connection
will continue to be used until it fails or until the Python process is restarted.

connect(bind_dn=None, bind_pwd=None)
Return a working LDAP server connection

If no DN or password for binding to the LDAP server are passed in, the DN and password configured
into the LDAP connection instance are used.

The connection is cached and will be re-used. Since a bind operation is forced every time the method
can be used to re-bind the cached connection with new credentials.

This method returns an instance of the underlying python-ldap connection class. It does not need to
be called explicitly, all other operations call it implicitly.

Raises RuntimeError if no server definitions are available. If all defined server connections fail the
LDAP exception thrown by the last attempted connection is re-raised.

delete(dn, bind_dn=None, bind_pwd=None)
Delete the record specified by the given DN

In order to perform the operation using credentials other than the credentials configured on the instance
a DN and password may be passed in.

14 Chapter 2. API documentation

CHAPTER

THREE

SUPPORT

If you need commercial support for this software package, please contact zetwork GmbH at
http://www.zetwork.com.

15

http://www.zetwork.com/

Products.LDAPConnector Documentation, Release 1.0

16 Chapter 3. Support

CHAPTER

FOUR

INDICES AND TABLES

• Index

• Search Page

• Glossary

17

Products.LDAPConnector Documentation, Release 1.0

18 Chapter 4. Indices and tables

INDEX

A
addServer() (ILDAPConnection method), 13

C
connect() (ILDAPConnection method), 14

D
delete() (ILDAPConnection method), 14

I
ILDAPConnection (interface in

dataflake.ldapconnection.interfaces), 13
insert() (ILDAPConnection method), 13

M
modify() (ILDAPConnection method), 13

R
removeServer() (ILDAPConnection method), 14

S
search() (ILDAPConnection method), 14

19

	Narrative documentation
	Installation
	Usage from the Zope ZMI
	Usage from Python
	String encoding issues
	Development
	Changelog for Products.LDAPConnector

	API documentation
	Interfaces

	Support
	Indices and tables
	Index

