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PyModel: Model-based testing in Python
Jonathan Jacky
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Abstract—In unit testing, the programmer codes the test cases, and also
codes assertions that check whether each test case passed. In model-based
testing, the programmer codes a “model” that generates as many test cases
as desired and also acts as the oracle that checks the cases. Model-based
testing is recommended where so many test cases are needed that it is not
feasible to code them all by hand. This need arises when testing behaviors
that exhibit history-dependence and nondeterminism, so that many variations
(data values, interleavings, etc.) should be tested for each scenario (or use
case). Examples include communication protocols, web applications, control
systems, and user interfaces. PyModel is a model-based testing framework in
Python. PyModel supports on-the-fly testing, which can generate indefinitely
long nonrepeating tests as the test run executes. PyModel can focus test cases
on scenarios of interest by composition, a versatile technique that combines
models by synchronizing shared actions and interleaving unshared actions.
PyModel can guide test coverage according to programmable strategies coded
by the programmer.

Index Terms—testing, model-based testing, automated testing, executable
specification, finite state machine, nondeterminism, exploration, offline testing,
on-the-fly testing, scenario, composition

Introduction

Model-based testing automatically generates, executes, and
checks any desired number of test cases, of any desired length
or complexity, given only a fixed amount of programming
effort. This contrasts with unit testing, where additional pro-
gramming effort is needed to code each test case.

Model-based testing is intended to check behavior: ongoing
activities that may exhibit history-dependence and nondeter-
minism. The correctness of behavior may depend on its entire
history, not just its most recent action. This contrasts with
typical unit testing, which checks particular results, such as
the return value of a function, given some arguments.

It is advisable to check entire behaviors, not just particular
results, when testing applications such as communication
protocols, web services, embedded control systems, and user
interfaces. Many different variations (data values, interleavings
etc.) should be tested for each scenario (or use case). This is
only feasible with some kind of automated test generation and
checking.

Model-based testing is an automated testing technology that
uses an executable specification called a model program as
both the test case generator and the oracle that checks the
results of each test case. The developer or test engineer must
write a model program for each implementation program or
system they wish to test. They must also write a test harness
to connect the model program to the (generic) test runner.
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With model program and test harness in hand, developers or
testers can use the tools of the model-based testing framework
in various activities: Before generating tests from a model, it
is helpful to use an analyzer to validate the model program,
visualize its behaviors, and (optionally) perform safety and
liveness analyses. An offline test generator generates test cases
and expected test results from the model program, which can
later be executed and checked by a test runner connected
to the implementation through the test harness. This is a
similar workflow to unit testing, except the test cases and
expected results are generated automatically. In contrast, on-
the-fly testing is quite different: the test runner generates the
test case from the model as the test run is executing. On-the-
fly testing can execute indefinitely long nonrepeating test runs,
and can accommodate nondeterminism in the implementation
or its environment.

To focus automated test generation on scenarios of inter-
est, it is possible to code an optional scenario machine, a
lightweight model that describes a particular scenario. The
tools can combine this with the comprehensive contract model
program using an operation called composition. It is also
possible to code an optional strategy in order to improve
test coverage according to some chosen measure. Some useful
strategies are already provided.

Model-based testing supports close integration of design
and analysis with testing. The analyzer is similar to a model
checker; it can can check safety, liveness, and temporal prop-
erties. And, the same models are used for these analyses as
for automated testing. Moreover, the models are written in the
same language as the implementation.

PyModel is an open-source model-based testing framework
for Python [PyModel11]. It provides the PyModel Analyzer
pma, the PyModel Graphics program pmg for visualizing the
analyzer output, and the PyModel Tester pmt for generating,
executing, and checking tests, both offline and on-the-fly. It
also includes several demonstration samples, each including a
contract model program, scenario machines, and a test harness.

The PyModel framework is written in Python. The models
and scenarios must be written in Python. It is often convenient,
but not required, if the system under test is also written in
Python, because it can be easier to write the test harness in
that case.

Traces and Actions

We need to describe behavior. To show how, we discuss the
Alternating Bit Protocol [ABP11], a simple example that ex-
hibits history-dependence and nondeterminism. The protocol
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is designed to send messages over an unreliable network. The
sender keeps sending the same message, labeled with the same
bit (1 or 0), until the receiver acknowledges successful receipt
by sending back the same bit. The sender then complements
the bit and sends a new message labeled with the new bit
until it receives an acknowledgement with that new bit, and
so on. When the connection starts up, both ends send bit 1.
The sender labels the first real message with 0.

A sample of behavior is called a trace. A trace is a sequence
of actions, where each action has a name and may have
arguments (so actions resemble function calls). The alternating
bit protocol has only two actions, named Send and Ack. Each
action has one argument that can take on only two values, 0
or 1. (We abstract away the message contents, which do not
affect the protocol behavior.) Here are some traces that are
allowed by the protocol, and others that are forbidden:

Allowed Allowed Allowed Forbidden Forbidden
------- ------- ------- --------- ---------
Send(0) Send(1) Send(1) Send(0) Send(0)
Ack(0) Send(1) Send(1) Ack(0) Ack(1)
Send(1) Ack(1) Ack(1) Send(0) Send(1)
Ack(1) Send(0) Send(1) Ack(0) Ack(1)

Ack(1) Ack(1)
Ack(1) Send(1)
Send(0)
Ack(0)

Traces like these might be collected by a test harness con-
nected to the sender. The Send are controllable actions in-
voked by the sender while the Ack are observable actions that
are observed by monitoring the network. (If the test harness
were connected to the receiver instead, the Send would be
the observable action and the Ack would be controllable.)

Finite Models

A model is an executable specification that can generate traces
(to use as test cases) or check traces (to act as an oracle). To
act as a specification, the model must be able to generate (or
accept) any allowed trace and must not be able to generate
any forbidden trace (it must reject any forbidden trace).

The alternating bit protocol is finite because there are only
a finite number of actions (only a finite number of possible
values for each action argument). Therefore this protocol can
be modeled by a finite state machine (FSM), which can be
represented by a graph where the edges represent actions and
the nodes represent states (Figure 1). Every allowed trace
can be obtained by traversing paths around this graph. In the
figure, some of the nodes have doubled borders. These are the
accepting states where traces are allowed to stop. A trace that
stops in a non-accepting state is forbidden. If no accepting
states are specified, all states are considered accepting states.
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Figure 1: Alternating bit protocol represented by a finite state
machine (FSM)

In PyModel, a finite state machine is represented by its
graph: a tuple of tuples, where each tuple represents a state
transition, the current state (a node), the action (an edge), and
the next state (another node):

graph = ((0, (Send, (1,),), 0),
(0, (Ack, (1,),), 0),
(0, (Send, (0,),), 1),
(1, (Ack, (0,),), 2),
... etc. ...
(4, (Send, (0,),), 1))

The PyModel Graphics program pmg generated Figure 1 from
this code.

Most interesting systems are infinite and cannot be de-
scribed by finite state machines. In PyModel, finite state
machines are most often used to describe scenario machines
that are composed with infinite contract model programs to
focus test case generation on scenarios of interest.

Infinite Models

Most interesting systems require infinite models. A system
requires an infinite model when it has an infinite number of
actions. This occurs whenever any of its action arguments
are drawn from types that have an infinite number of values:
numbers, strings, or compound types such as tuples.

Simple systems can be infinite. Consider a stack, a last-in
first-out queue which provides a Push action that puts a value
on top of the stack and a Pop action that removes the value
from the top of the stack and returns it. Here are some allowed
traces:

Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

In PyModel, an infinite model is expressed by a Python
module with an action function for each action and variables
to represent the state, the information stored in the system. In
this example, the state is a list that stores the stack contents
in order. Constraints on the ordering of actions are expressed
by providing each action with an optional guard or enabling
condition: a Boolean function that is true for all combinations
of arguments and state variables where the action is allowed to
occur. In this example, Push is always enabled so no enabling
function is needed; Pop is only enabled in states where the
stack is not empty. Here is the model, as coded in the module
Stack:

stack = list() # State

def Push(x): # Push is always enabled
global stack
stack.insert(0,x)

def Pop(): # Pop requires an enabling condition
global stack
result = stack[0]
del stack[0]
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return result

def PopEnabled(): # Pop enabled when stack not empty
return stack

Analysis

It can be helpful to visualize the behavior of a model program.
The PyModel Graphics program pmg can generate a graph
from finite state machine, as in Figure 1. The PyModel
Analyzer pma generates a finite state machine from an infinite
model program, by a process called exploration which is a
kind of concrete state model-checking. In order to finitize the
model program, it is necessary to limit the action arguments
to finite domains and it may also be necessary to limit the
state by state filters, Boolean functions which the state must
satisfy. Exploration in effect performs exhaustive testing of
the model program over these finite domains, generating all
possible traces and representing them compactly as an FSM.

Here we define a domain that limits the arguments of Push
to the domain 0, 1; we also define a state filter that limits
the stack to fewer than four elements:

domains = { Push: {’x’:[0,1]} }

def StateFilter():
return len(stack) < 4
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Figure 2: FSM for finitized Stack model program, generated by
exploration.

Subject to these limitations, pma generates a finite state
machine that is rendered by pmg (Figure 2).

Every trace allowed by the (finitized) model can be obtained
by traversing paths around the graph. This is useful for vali-
dation: you can check whether the graph allows the expected
behaviors.

Safety and Liveness

In addition to providing visualization, the analyzer can check
other properties. Safety analysis checks whether anything bad
can happen. You specify safety requirements by defining a
state invariant, a Boolean function on state variables that is
supposed to be satisfied in every state. The analyzer checks the
invariant in every state reached during exploration and marks
unsafe states where the invariant is violated. Liveness analysis
checks whether something good will happen. You specify
liveness requirements by defining an accepting state condition,
a Boolean function on state variables that is supposed to
be satisfied in the states where a trace ends. The analyzer
checks the accepting state condition in every state and marks
the terminal states (which have no outgoing actions) where

the condition is violated; these are dead states from which
an accepting state cannot be reached. Since exploration is
exhaustive, these analyses are conclusive; they are machine-
generated proofs that the safety and liveness properties hold
(or not) for the model program over the given finite domains.

Test Harness

In order to execute tests, it is necessary to write a test harness
that connects the model program to the test runner pmt. The
test harness usually encapsulates the implementation details
that are abstracted away from the model. It is often convenient,
but not required, if the implementation under test is also
written in Python, because it can be easier to write the test
harness in that case.

Here is a fragment of the code from the harness for testing
a web application. As it happens, the server code of the web
application that we are testing here is in PHP, not Python, but
this is not an inconvenience because the test harness acts as a
remote web client, using the Python standard library module
urllib, among others. The model includes Initialize,
Login, and Logout actions, among others:

def TestAction(aname, args, modelResult):
...

if aname == ’Initialize’:
session = dict() # clear out cookies/session IDs

elif aname == ’Login’:
user = users[args[0]]
...
password = passwords[user] if args[1] == ’Correct’

else wrongPassword
postArgs = urllib.urlencode({’username’:user,

’password’:password})
# GET login page
page = session[user].opener.open(webAppUrl).read()
...
if result != modelResult:
return ’received Login %s, expected %s’ % \

(result, modelResult)

elif aname == ’Logout’:
...

Offline Testing

Offline testing uses a similar workflow to unit testing, except
the test cases and expected results are generated automatically
from the model program.

Traces can be used as test cases. The PyModel Tester pmt
can generate traces from a (finitized) model program; these
include the expected return values from function calls, so they
contain all the information needed for testing. Later, pmt can
act as the test runner: it executes the generated tests (via
the test harness) and checks that the return values from the
implementation match the ones in the trace calculated by the
model program.

On-the-fly Testing

In On-the-fly testing the test runner pmt generates the test case
from the model as the test run is executing. On-the-fly testing
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can execute indefinitely long nonrepeating test runs. On-the-
fly testing is necessary to accommodate nondeterminism in the
implementation or its environment.

Accommodating nondeterminism requires distinguishing
between controllable actions (functions that the test runner
can call via the test harness), and observable actions (events
that the test harness can detect). For example, when testing
the sender side of the alternating bit protocol, Send is con-
trollable and Ack is observable. Handling observable actions
may require asynchronous programming techniques in the test
harness.

Strategies

During test generation, alternatives arise in every state where
multiple actions are enabled (that is, where there are multiple
outgoing edges in the graph of the FSM). Only one action can
be chosen. The algorithm for choosing the action is called a
strategy. In PyModel, the default strategy is random choice
among the enabled actions. It is also possible to code an
optional strategy in order to improve test coverage according
to some chosen measure.

Some useful strategies are already provided. The
ActionNameCoverage strategy chooses different actions,
while the StateCoverage strategy attempts to reach
unvisited states. Here are some test cases generated from the
stack model using different strategies:

Random Action name State
(default) coverage coverage
-------- -------- --------
Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

Composition

Composition is a versatile technique that combines models.
PyModel uses it for scenario control, validation, and program
structuring. All of the PyModel commands can accept a list
of models to be composed in any context where they expect
a model.

Composition combines two or more models to form a new
model, the product. (In the following discussion and examples,
just two models are composed.)

M1 ×M2 = P

When the product is explored, or is used to generate or
check traces, PyModel in effect executes the composed models
in parallel, synchronizing on shared actions and interleaving
unshared actions. A shared action occurs in both models, an
unshared action occurs in only one. A shared action must be
simultaneously enabled in both models in order to execute
in the product. This results in synchronizing the execution of
the shared actions. This usually has the effect of limiting or

restricting behavior, in effect filtering it (Figure 3). This is
useful for both scenario control and validation, as we shall
see.
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Figure 3: Composition synchronizes on shared actions.

An unshared action can execute in the product whenever it
is enabled in its own model. This results in interleaving the
execution of the unshared actions in the product. This usually
has the effect of enlarging the behavior, in effect multiplying
it (Figure 4). This can be useful as a structuring technique for
building up complex models from simpler ones.
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Figure 4: Composition interleaves unshared actions.

Notice that a state is an accepting state in the product if
and only if it is an accepting state in both of the composed
models.

Scenario Control

A difficulty with any automated testing method is generating
too many tests. We need scenario control to limit test runs
to scenarios of interest. We can achieve this by composing
the comprehensive contract model program, usually a Python
module with state variables etc., with a particular scenario
machine, usually an FSM.

Contract ×Scenario = Product

In this example (Figure 5), the contract model program (on
the far left) allows many redundant, uninteresting startup and
shutdown paths. We would like to intensively test just the few
interesting actions in this model. We create a scenario machine
(on the near left) that specifies a single path through startup
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and shutdown, and omits the interesting actions. When we
compose the two models, the startup and shutdown actions
are shared so the two models must synchronize, which forces
the product to follow the sequences in the scenario. The
interesting actions are unshared, so they are free to interleave,
and the product can execute these as long as they are enabled.
The product (on the right) will only generate traces that are
interesting for this test purpose.
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Figure 5: Composition with a scenario can eliminate uninteresting
paths from tests.

Validation

A model program is just a program so it is necessary to
validate it: to confirm that it expresses the intended behaviors.
As already noted, simply inspecting the graphs generated by
the analyzer can be helpful for this.

Composition also supports a more rigorous validation pro-
cedure analogous to unit testing. Composing a contract model
program with a scenario machine results in a product that
reaches an accepting state if and only if the model allows the
behaviors described by the scenario, that is, if the model can
execute the scenario. If the model cannot execute the scenario,
the product will not reach an accepting state. Therefore, a
collection of scenarios that are each known a priori to be
allowed or forbidden can act as a unit test suite for a model
program. Composing the model with each scenario in turn is,
in effect, executing the unit test suite.

Figures 3 and 5 both show examples where the model
program can execute the scenario. In Figure 6 we compose the
stack model with a scenario that executes Push(1) followed
by Pop(),0. This is forbidden, because pop should only
return the value that was most recently pushed. As expected,
we see that the product only contains the push action because
it is unable to synchronize on the pop action, which is not
enabled in the model. The product does not reach an accepting
state, which shows that the model does not allow this scenario.

This technique can be use to check a model program for
any property that can be expressed by a finite state ma-
chine, including any temporal logic formula. Exploration with
composition is similar to model checking, and is a powerful
complement to the state-based safety and liveness analyses
described earlier.
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Figure 6: Composition with a forbidden scenario cannot reach an
accepting state.

Conclusions

Model-based testing can encourage different approaches to
testing. It encourages on-the-fly testing --- but in general, on-
the-fly test runs are not reproducible, due to nondeterminism.
It suggests extending testing to noninvasive monitoring or run
time verification --- if the test harness supports observable
actions, the test runner can check log files or monitor network
traffic for conformance violations.

The most intruiging prospect might be better integration of
design and analysis with testing. Exploration with composition
is like model checking; it can can check for safety, liveness,
and temporal properties. And, the same models are used for
these analyses as for automated testing. Moreover, the models
are written in the same language as the implementation, which
could make them accessible to developers and test engineers,
not just formal methods experts.

Model-based testing has been used on large projects in
industry, but only post-hoc. Test engineers were given infor-
mal documentation and an implementation to test, and then
reverse-engineered the models [Grieskamp08]. A more rational
workflow might be to write the model before writing the
implementation, analyze and tweak the design, then implement
and test.

Related work

The techniques described in this paper can be expressed in any
programming language. More detailed explanations and exam-
ples, using the NModel framework for C# [NModel11], appear
in [Jacky08]. Another view of model-based testing appears in
[Utting07]. Model checking is discussed in [Peled01].
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