%, StochPy

Stochastic modelling in Python

StochPy User Guide
Release 1.0.0

¢

Timo Maarleveld

September 19, 2011

I Introduction

II Start using StochPy

IIT Stochastic Modelling

1 Modelling input
1.1 Stochastic versus Deterministic Rate Equations

1.2 Zerothorder
1.3 Firstorder
14 Secondorder
1.5 Thirdorder
2 Stochastic Simulation Algorithms
2.1 Algorithms,
2.2 Model Selection
23 RunaSSA
2.4 Build-in Analysis Techniques
25 Example 0 ..
2.6 Using StochPy asalLibrary
2.7 Stochastic Testsuite

3 Nucleosome Modification Simulations

3.1 Nucleosome Model Builder

IV Installation and Configuration

4 Installation

4.1 WIindows
42 Linux/MACOS/Cygwin

5 Configuration

CONTENTS

V The PySCeS Model Description Language 37

6 Defining a PySCeS model 41
6.1 Akineticmodel e 41
6.2 Modelkeywords 41
6.3 Global unitdefinition. e 42
6.4 Symbol names and commentso 42
6.5 Compartment definition Lo 43
6.6 Function definitions L L e 43
6.7 Defining fixed specieso e e 44
6.8 Reaction stoichiometry and rate equations 44
6.9 Species and parameter initialisation L0 46
7 Advanced model construction 49
7.1 Assignmentrules oL 49
7.2 Raterules L e e 49
7.3 Bvents e e e e e e e 50
T4 PIeCewise v v i e e e e e e e e e e 50
7.5 Reagentplaceholder 51
8 Example StoMPy input files 53
8.1 Basicmodel definition 53
82 Advancedexample e 54
VI StochPy Module documentation 57
9 Stochastic Simulation Module 59
10 Direct Method 65
11 First Reaction Method 67
12 Next Reaction Method 69
13 Optimized Tau-Leaping 71
14 Analysis 75
15 Indexed Priority Queue (IPQ) 79
16 DNORM 81
17 PySCeS MDL Parser 83
18 PyscesInterfaces 87
19 Stochastic Nucleosome Modification Simulations 89

20 N-nucleosome model builder 93

VII Indices and tables 99

Python Module Index 103

Part I

Introduction

StochPy User Guide, Release 1.0.0

StochPy (Stochastic Modelling in Python) is an easy-to-use package, which provides several
stochastic simulation algorithms (SSA’s). These SSA’s can be used to simulate a biochemical
system in a stochastic manner. Further, several unique and easy-to-use analysis techniques are
provided by StochPy.

The classical approach to simulate a biochemical system is by a set of coupled ordinary differ-
ential equations (ODEs). Biological systems are often highly complex, thus there are regularly
no analytical solutions available. As a result, a set of coupled ODEs is often numerically solved.

This classical approach has a deterministic nature. Therefore, a given set of ODEs will always
produce the same results. These results describe the macroscopic behaviour of the biochemical
system, while cell populations have regularly a heterogeneous nature. Further, the change
in species amount in a deterministic model is a continuous process, while this is in reality a
discrete process.

This deterministic nature becomes really problematic for systems with molecules that have a
low copy number. As a result, deterministic models are often inaccurate.

SSA’s try to describe the time evolution of a reacting system, such that it takes into account
discreteness and stochasticity. Discreteness and stochasticity play often important roles in bio-
chemical systems. Therefore, SSA’s are widely used to simulate biochemical systems. Espe-
cially for biochemical systems that contain low copy numbers. For such systems, deterministic
models often fail to capture the stochasticity of the system, while SSAs are capable of capturing
this stochastic behaviour.

StochPy is an extension of PySCeS. PySCeS - the Python Simulator for Cellular Systems - is
an extendible tool kit for the analysis and investigation of cellular systems. StochPy operates
independently of PySCeS, but it uses several parts of the PySCeS package, such as the text
based Model Description Language of PySCeS. This MDL is further explained in the PySCeS
Model Description Language section. PySCeS provides integrators for time simulation of de-
terministic models. Further, structural analysis can be done. For example, information about
the stoichiometric matrix (N), the kernel matrix (K), and the link matrix (L) can be obtained.
Also, metabolic control analysis (MCA) can be performed. In the latest PySCeS releases, a
prototype is build-in to use StochPy.

StochPy User Guide, Release 1.0.0

Part 11

Start using StochPy

StochPy User Guide, Release 1.0.0

Here, we assume that StochPy is already installed. If not, check README.txt or installation
section of this user guide.

To start modelling, it is necessary to work in an interactive Python shell. You can use iPython
(recommended), IDLE (Python GUI), or simply the python command in a terminal:

S python

Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)

[GCC 4.5.2] on linux?2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Then, use import stochpy:

>>> import stochpy

FHE R R R R R R 4

#
Welcome to the interactive StochPy environment
#
S i i i i i i
StochPy: Stochastic modelling in Python

http://stompy.sourceforge.net
Copyright (C) T.R Maarleveld, B.G. Olivier 2010-2011
Email: tmd200Q@users.sourceforge.net
VU University, Amsterdam, Netherlands
StochPy is distributed under the BSD licence.
ER i kR kR R

Version 1.0
Output Directory: /home/user/Stochpy
Model Directory: /home/user/Stochpy/pscmodels

This message means that the StochPy package is imported and it is ready to use. Use the next
command to get more information about StochPy:

>>> help (stochpy)

Consequently, it is possible to start one of the four modules, which will be explained in the next
sections.

StochPy User Guide, Release 1.0.0

Part 111

Stochastic Modelling

CHAPTER
ONE

MODELLING INPUT

The input for performing stochastic modelling are rate equations and initial conditions. For
this, the PySCeS MDL is used as default format, which is further explained in the PySCeS
Model Description Language section. Also, StochPy supports to use of models that are written
in SBML. To use models written in SBML, several libraries are necessary, which is explained
in the installation section. These SBML input files are converted into the PySCeS MDL format,
which are used by the stochastic simulators.

StochPy supports assignments and SBML event facilities which resets species populations dur-
ing the simulation since the StochPy 1.0.0 release.

1.1 Stochastic versus Deterministic Rate Equations

Deterministic rate equations have normally been used to describe a system of biochemical reac-
tions, whereas these equations are often not valid for stochastic modelling. Therefore, stochas-
tic rate equations are necessary. Therefore, it is important to understand the differences between
deterministic and stochastic rate equations and why deterministic rate equations can be invalid.
For this reason, the next part of this section explains the differences between deterministic and
stochastic rate equations.

First, deterministic models represent species often by concentration, while stochastic models
represent species often by amounts. The species amounts are identical to:

Na* [X] *Volume (L)

Here, Na is the number of Avegadro (6.02*%10e23). This is the first step of the conversion of
deterministic rate constants (k) to stochastic rate constants (c).

1.2 Zeroth order

Assume the following reaction:

-—> X

The deterministic of rate equation of this reaction is:

11

StochPy User Guide, Release 1.0.0

k (Ms™-1)

The stochastic rate equation of this reaction is:

c (s™—1)

1.3 First order

Consider the following reaction:

X —=>Y

The deterministic rate equation of this reaction is:
k*[X]

The stochastic rate equation of this reaction is:
cxx (s”-1)

Here, x corresponds to Na*[X]*Volume(L) particles. This means that x changes
k*Na*[X]*Volume(L) = k*x molecules per second, which means that k=c. Thus, first order
stochastic and deterministic rate equations are identical.

1.4 Second order

There exist several types of second order reactions. First, consider the next reaction:

X+Y ——> 7%

The deterministic rate equation of this reaction is:

kx[X]*[Y] (Ms”—1)

The stochastic rate equation of this reaction is:: c*x*y (s*-1)

Again, [X] corresponds to Na*[X]*Volume(L) particles and the same is true for [Y]. Therefore,
the following relationship holds:

kx [X]*[Y] (Ms"-1) = (kxx*y)/ (Na*V)"2, hence c = k/ (Na*V)
Secondly, consider a dimerisation reaction:
2X ——> Y

The deterministic rate equation of this reaction is:
kxX"*2

The stochastic rate equation of this reaction is:

12 Chapter 1. Modelling input

StochPy User Guide, Release 1.0.0

O.5xc*x* (x—1)

The first important concept to understand is that a dimerisation reaction can only occur if there
are at least two molecules of species X available. For this reason, the stochastic rate equation

must be zero if there is only one X molecule available.

1.5 Third order

This type of reactions does usually not occur in chemical reactions, but they are described just

for the sake of completeness.
There exist three types of third order reactions:

1) X+Y+Z --> A
The deterministic rate equation of this reaction is:
kx [X]+[Y]*[2Z]

The stochastic rate equation of this reaction is:: c*x*y*z
2. X+2Y >7Z
The deterministic rate equation of this reaction is:

kx [X]+([Y]"2)

The stochastic rate equation of this reaction is:

0.5+xcxx*xy* (y—1)

3) 3X ——> Y

The deterministic rate equation of this reaction is:

kx[X]"3

The stochastic rate equation of this reaction is:

(1/6) *+x* (x—1) * (x-2)

For the last reaction, three x molecules are necessary, thus this rate equation can not fire if there

are less than three molecules of x available.

Further explanations are given in the Stochastic Simulations Algorithms section.

1.5. Third order

13

StochPy User Guide, Release 1.0.0

14 Chapter 1. Modelling input

CHAPTER
TWO

STOCHASTIC SIMULATION
ALGORITHMS

The most important module of this package is the stochastic simulation algorithm module.

2.1 Algorithms

StochPy contains four Stochastic Simulation Algorithms (SSA’s):
* Direct Method
* First Reaction Method
* Next Reaction Method
* Tau-Leaping Method
Use the following code to start using the SSA module:

>>> mod = stochpy.SSA()
Info: The Direct method is selected to perform the simulations
Parsing file: /home/user/Stochpy/pscmodels/ImmigrationDeath.psc

The default algorithm is the Direct Method and the default stochastic model is the Immigration-
Death model. Next, a stochastic simulation can be done with the default settings. Of course,
another method or model can be selected:

>>> mod.Method ('FirstReactionMethod’)

Info: The First Reaction method is selected to perform the simulations

>>> mod.Method (' NextReactionMethod’)

Info: The Next Reaction method is selected to perform the simulations

>>> mod.Method (' TauLeaping’)

Info: The Explicit Tau-Leaping method is selected to perform the simulations
>>> mod.Method ('Direct’)

Info: The Direct method is selected to perform the simulations

15

StochPy User Guide, Release 1.0.0

2.2 Model Selection

The following comment can be used to select another model in the PySCeS MDL.:

>>> mod.Model (' BurstModel .psc’)

Parsing file: /home/user/Stochpy/pscmodels/BurstModel.psc

>>> mod.Model (File=’BurstModel.psc’,dir=' /home/user/Stochpy/pscmodels’)
Parsing file: /home/user/Stochpy/pscmodels/BurstModel.psc

Alternatively, one can use a model written in the systems biology markup language (SBML):

>>> mod.Model ("dsmts-001-01.xml’,’” /home/user/")

Info: extension is .xml

Info: single compartment model: locating "Death" in default compartment
Info: single compartment model: locating "Birth" in default compartment
Writing file: /home/user/Stochpy/pscmodels/dsmts-001-01.xml.psc

SBML2PSC

in : /home/user/dsmts-001-01.xml

out: /home/user/Stochpy/pscmodels/dsmts—-001-01.xml.psc

Info: SBML data is converted into psc data

and 1s stored at: /home/user/Stochpy/pscmodels

Parsing file: /home/user/Stochpy/pscmodels/dsmts-001-01.xml.psc

>>> mod.model file
"dsmts-001-01.xml.psc’

>>> mod.model_dir

’ /home/user/Stochpy/pscmodels’

2.3 Run a SSA

Then, a simulation can be started. By default, one trajectory of 1000 time steps is generated.:

>>> mod.DoStochSim()

Info: 1 trajectory is generated

Number of time steps 1000 End time 15.2161060754
Simulation time 0.0805060863495

>>> mod.Trajectories (5)

Info: The number of trajectories is: 5

>>> mod.DoStochSim()

Info: 5 trajectories are generated

Info: Time simulation output of the trajectories is stored at
Info: output is written to: /home/user/Stochpy/ssa_smod.log
Simulation time 0.24516955151

Also, it is possible to select the end time of a simulation. Be careful, because this is dangerous!
It is dangerous, because the reactions in the model determine when a certain reaction fires. So,
dT - the time between two reactions to fire - is large if the majority of the reactions is unlikely to
fire, but becomes small if the majority of the reactions is very likely to fire. As a result, model

16 Chapter 2. Stochastic Simulation Algorithms

StochPy User Guide, Release 1.0.0

A takes 1000 time steps to reach the end time, but model B could take more than 1,000,000
time steps to reach the end time:

>>> mod.Endtime (100)

The high-level function DoStochSim() does more than starting a stochastic simulation. It ac-
cepts the following arguments:

>>> mod.DoStochSim(method = "Direct’, mode = ’'time’, end = 50,
trajectories = 1)

Info: The Direct method is selected to perform the simulations
Parsing file: /home/user/Stochpy/pscmodels/ImmigrationDeath.psc
Info: 1 trajectory is generated

Number of time steps 3807 End time 50.0049282696

Simulation time 0.142936944962

As aresult, one can use one high-level function to determine the modelling options. Moreover,
StochPy can show the the current settings:

>>> mod.ShowSpecies ()
[mRNA’]
>>> mod.ShowOverview ()

Current Model: ImmigrationDeath.psc

Simulation end time: 50

Current Algorithm: <class ’'stochpy.DirectMethod.DirectMethod’ >
Number of trajectories: 1

Propensities are not tracked

Here, ShowSpecies() gives all the species in the model and ShowOverview() gives all the cur-
rent settings.

Finally, the description of the system can be changed (the model), while you are working with
StochPy. For example, you want to simulate the immigration-death model with several val-
ues of Ksyn and Kdeg. First, you start a simulation with the default values, but you decide to
change these default values. Then, simply change one of the parameters in the file Immigra-
tionDeathmodel.psc (in the directory where the models are stored) and reload the model with
the following high-level function:

>>> mod.Reload()
Parsing file: /home/user/Stochpy/pscmodels/ImmigrationDeath.psc

2.4 Build-in Analysis Techniques

After a simulation, some analysis can be done. Besides information about the time simulation,
probability distributions, propensities, and waiting time plots can be created. The default line
style is dotted. Furthermore, interpolation can be done if more than 1 trajectory is generated:

>>> mod.PlotTimeSim(linestyle = ’'dashed’,title = "Time Simulation Plot’)
>>> mod.PlotPropensities ()
>>> mod.PlotDistributions ()

2.4. Build-in Analysis Techniques 17

StochPy User Guide, Release 1.0.0

>>> mod.PlotWaitingtimes ()
>>> mod.PlotInterpolatedData ()

Each species is plotted by default, but the user can determine which species are plotted:

>>> mod.PlotTimeSim(species2plot = [’7S1’,"S2"1])
>>> mod.PlotPropensities (rates2plot = "R1")
>>> mod.PlotWaitingtimes (rates2plot = "R27)

>>> mod.PlotDistributions ('’ S4")
Error: species S4 is not in the model

In addition, stochpy.plt is available to manipulate generated plots or to make your own plots:

>>> mod.PlotTimeSim()

>>> stochpy.plt.title (' Your own title’)

>>> stochpy.plt.xlabel (' Time (s)’)

>>> stochpy.plt.savefig(’ filename.pdf’) # stores the plot in the cwd

Of course, it is also possible to print such information about the simulation, which can be useful
if MatPlotLib is not installed:

>>> mod.PrintTimeSim ()

>>> mod.PrintPropensities ()

>>> mod.PrintDistributions ()
>>> mod.PrintWaitingtimes ()

>>> mod.PrintMeanWaitingtimes ()
>>> mod.PrintInterpolatedData ()

Also, such information can be printed to a text file:

>>> mod.Write2File ()

>>> mod.Write2File (' TimeSim’,’ /home/user/timesmod.txt’)
>>> mod.Write2File (' Propensities’)

>>> mod.Write2File (’'Distributions’)

>>> mod.Write2File (' Waitingtimes’)

>>> mod.Write2File (' Interpol’)

—~ o~ o~ —~

One can get information about the mean and standard deviation of each species during a simu-
lation:

>>> mod.ShowMeans ()
>>> mod.ShowStandardDeviations ()

Finally, one can use the data objects that store the simulation data to perform their own type of
analysis. See Using Stochpy as a Library.

2.5 Example

Stochastic simulations are done with a dimerisation model to illustrate how you can use the
stochastic simulation algorithm module (we assume that StochPy is already imported). This
model contains two species, denoted by P and P2.

18 Chapter 2. Stochastic Simulation Algorithms

StochPy User Guide, Release 1.0.0

>>> mod = stochpy.SSA()

>>> mod.Model (/dsmts-003-02.xml.psc’)

>>> mod.DoStochSim(end = 50,mode = ’"time’,trajectories = 5)
Info: 5 trajectories are generated

Info: Time simulation output of the trajectories is stored at
Info: output is written to: /home/user/Stochpy/ssa_smod.log
Simulation time 0.194089889526

>>> mod.PlotTimeSim()

>>> mod.PlotDistributions () # A longer simulation (end=5000) was done
>>> mod.PlotPropensities ()

>>> mod.PlotWaitingtimes ()

>>> mod.PlotInterpolatedData ()

StochPy Time Simulation Plot

1000

800 1

|\
saartaatt

600F % .

4001

Species Amounts

200

Time

2.5. Example 19

StochPy User Guide, Release 1.0.0

StochPy Distribution Plot
0.08 : :

R

0.07} : N P2|.

TRahRaFrLL
P oty

P

0.06} it :

-

0.01

z:
i
iz H
tr §
0.05} Pd : .
> ik
= i
= -
o P
g 0-04’ E E N
[¢) o
ful [
o HE)
o
] -
0.03} HE :
%
i
I
oy
0.02f : -
P
{ i
i
[y -
b
N
\y
k)

s

i
i

0.005 200 400 600 800 1000
Number of Molecules

StochPy Propensities Plot
100 T T T

----- Dimerisation
----- Disassociation

Propensities

60

Time

20 Chapter 2. Stochastic Simulation Algorithms

StochPy User Guide, Release 1.0.0

StochPy Waitingtimes Plot

10°
----- Dimerisation |}
----- Disassociation|
10° | 1
> 10'F]
(@)
C
(0]
=}
O
g
L
10° 1
107" f ;
'2 l el L] L PSSR | L PR S S S S
10
10" 10° 102 10"t 10° 10!
Interarrival time t
StochPy Interpolated Time (# of trajectories = 10000) Plot
1000 T T T T T
- - P
- - P2
{
800} : i
1
9 I
S 600F i
g)
< 1
L T
8 2001k II 'IIIIII_IIIIII_I_I_I.I.IZEZEIEI-I-I-I-I-IIZEEEI 1
& T P e
I
i I'I
E I
T III]
200F Ry 1
E AT T T 751+
B P I T T
;
O" l l l l l
0 10 20 30 40 50 60

Time

2.5. Example

21

StochPy User Guide, Release 1.0.0

2.6 Using StochPy as a Library

It is straightforward to use StochPy as a library in your code. A data object, data_stochsim, is
created for those that want to use StochPy as a library or for people that want to do their own
analysis. Species, distributions, propensities, simulation time, and waiting times are stored in
for instance NumPy arrays and lists. In addition, labels are stored for each of these data types
in separate lists. Of course, data such as distributions are only available if they are calculated.

Furthermore, determined means and standard deviations are stored in dictionaries. Finally,
information about the stochastic simulation such as the number of time steps, the simulation
end time, and the trajectory is stored.

This data object (data_stochsim) is written to disk space if multiple trajectories are generated.
The high-level function GetTrajectoryData(n) can be used to get access to the simulation data
of a specific trajectory. By default, the latest generated trajectory is not written to disk space,
thus accessible without using the high-level function GetTrajectoryData(n):

>>> import stochpy

>>> mod = stochpy.SSA()

>>> mod.DoStochSim(trajectories = 10,mode = ’'steps’,end = 1000)

>>> mod.data_stochsim
<stochpy.PyscesMiniModel.IntegrationStochasticDataObj object at 0x32cd750>
>>> mod.data_stochsmod.simulation_trajectory

10

>>> mod.data_stochsmod.time # time array (not shown)

>>> mod.data_stochsmod. species # species array (not shown)

>>> mod.data_stochsmod.species_labels

>>> mod.data_stochsmod.getSpecies () # time + species array (not shown)
>>> mod.GetMeans () # for each species

>>> mod.data_stochsmod.means

>>> mod.GetDistributions ()

>>> mod.data_stochsmod.distributions # for each species (not shown)
>>> mod.GetWaitingtimes ()

>>> mod.data_stochsmod.waiting_times # for each reaction (not shown)
>>> mod.GetTrajectoryData (5)

>>> mod.data_stochsmod.simulation_trajectory

5

Alternatively, one can be interested in interpolated data from one simulation with multiple
trajectories. A second data object (data_stochsim_interpolated) is becomes available if the user
uses one of the functions to get interpolated data:

>>> mod.data_stochsim_interpolated

AttributeError: SSA instance has no attribute ’'data_stochsim_interpolated’
>>> mod.GetInterpolatedData ()

>>> mod.data_stochsim_interpolated
<stochpy.PyscesMiniModel.InterpolatedDataObj object at 0x32cd3d0>

>>> mod.data_stochsim_interpolated.time # time array (not shown)

>>> mod.data_stochsim_interpolated.means # at every t (not shown)

>>> mod.data_stochsim_interpolated.standard_deviations # SDs (not shown)

22 Chapter 2. Stochastic Simulation Algorithms

StochPy User Guide, Release 1.0.0

2.7 Stochastic Test suite

The stochastic test suite from Evans et al. 2008 (The SBML discrete stochastic models test
suite) is used to test StochPy. This test suite tests stochastic simulation software on the follow-
ing points:

* local and global parameters (parameter overloading)

* boundary conditions

* Cell compartment volume

* hasOnlySubstanceUnits flag

* math expression parsing

e compartment volume explicitly including in the rate laws
* assignment rules

* time events

* species population events

StochPy succesfully reproduces the desired results, whereas there is one exception. StochPy
converts species concentrations (HasOnlySubstanceUnits = True) to species amounts. Here,
the species concentration is multiplied by the volume of the compartment. In the stochastic
test suite results, a simulation is done with species concentrations, which gives a different
simulation result.

Some examples (dsmts-001-07, dsmts-001-19, dsmts-003-03, and dsmts-003-04) are shown
here. These models test on multiple species, assignment rules, time events, and species amount
events respectively.

2.7. Stochastic Test suite 23

StochPy User Guide, Release 1.0.0

600 StochPy Interpolated Time (# of trajectories = 10000) Plot

HWHHH
" 200) it
Hﬂﬂﬂ
e
., StochPy Interpolated Time (# of trajectories = 10000) Plot

L —
g

Time

24 Chapter 2. Stochastic Simulation Algorithms

StochPy User Guide, Release 1.0.0

26 Chapter 2. Stochastic Simulation Algorithms

CHAPTER
THREE

NUCLEOSOME MODIFICATION
SIMULATIONS

As mentioned in the Stochastic Simulation Algorithms section StochPy contains four stochastic
simulation algorithms. These algorithms can be used to perform simulations on all sorts of
biochemical systems.

Usually, default time plots, distributions, propensities, and waiting times are sufficient analy-
sis techniques. However, this is not always to case. Here, we demonstrate the flexibility of
StochPy, because it is relatively easy to add your own modules or analysis techniques.

One example is the simulation of nucleosome modification models. Here, each nucleosome
can carry several modifications. As a result, each nucleosome is described through several
reactions, where each reaction gives information about a particular modification. Here, we are
interested in for example the global pattern of these modifications. Therefore, default analysis
techniques are insufficient. For this reasons, a nucleosome simulation module was built, which
can be used interactively (make sure that StochPy is imported, which is shown in the Start using
StochPy section):

>>> smod = stochpy.NucSim/()

Welcome to the nucleosome modification simulation module

Info: The Direct method is selected to perform the simulations
Parsing file: /home/user/Stochpy/pscmodels/modell.psc

Now, it is possible to start a simulation with the default settings, but it is again possible to select
for example another model or choose another number of time steps, just as is described in the
Stochastic Simulation Algorithms section:

>>> smod.GetGapMeasure ()

Gap Measure 0.993

>>> smod.PlotGlobalTimeSim()

>>> smod.PlotGlobalDistributions ()
>>> smod.PlotPattern ()

>>> smod.PlotStateTimes ("M1")

Again, it is possible to plot information from not all species:

>>> smod.PlotGlobalTimeSim(’'M’)
>>> smod.PlotGlobalTimeSim(['M", A’])

27

StochPy User Guide, Release 1.0.0

And to print the output or write it to a file:

>>> gsmod.PrintGlobalTimeSim()

>>> smod.PrintGlobalDistributions ()
>>> smod.PrintPattern ()

>>> smod.PrintStateTimes ()

>>> smod.Write2File ()

3.1 Nucleosome Model Builder

An average gene contains about 40 nucleosomes. Therefore, nucleosome modification mod-
els get enormously large. As a result, a nucleosome model builder module is created, which
quickly builds the user-defined models:

>>> model = stochpy.NucModel ()

>>> model.Build()

/home/user/Stochpy/pscmodels

The generated model is stored at /home/user/Stochpy/pscmodels/modell.psc
>>> help (model)

By default, a nucleosome model with 20 nucleosomes was built which can be considered as
a small gene. A small gene was chosen, because the number of reactions explodes for larger
number of nucleosomes and 20 nucleosomes was still large enough to get all sorts of biological
phenomena. Further, 8 pre-defined models are build-in:

>>> model .ModelType (2)
ModelType: 2

Of course, the number of nucleosomes can be changed:

>>> model.ChangeN (10)

The number of nucleosomes is: 10

>>> model.Build()

/home/user/Stochpy/pscmodels

The generated model is stored at /home/user/Stochpy/pscmodels/model2.psc

Notice that the pre-defined models are build at the configuration step of StochPy, thus these are
overwritten if new versions is build.

Also, landing zones interactively can be determined interactively:

>>> model .BuildLandingZones ({"M’, [10,11]1})

Finally, several other high-level functions are developed:

>>> model.Recruitment ()

Recruitment is activated

>>> model .Neighbours ()

Info: Neighbour interactions are activated

>>> model.LongRangelInteractions ()

Info: Long range neighbour interactions are activated"

28 Chapter 3. Nucleosome Modification Simulations

StochPy User Guide, Release 1.0.0

Info: The default threshold is 7.
Use Threshold(value) to change the threshold.
>>> model.ChangeThreshold (5)
Info: The Threshold is 5
>>> model.Decay ()
Info: (Long range) neighbour interactions are activated
Info: The default threshold is 7.
Use Threshold(value) to change the threshold.

Info: Decay effect is activated

3.1. Nucleosome Model Builder

29

StochPy User Guide, Release 1.0.0

30 Chapter 3. Nucleosome Modification Simulations

Part IV

Installation and Configuration

31

CHAPTER
FOUR

INSTALLATION

The following software is required before installling StochPy:
* Python 2.x+ (http://www.python.org/download/releases/2.7.2/)
e NumPy 1.x+ (http://new.scipy.org/download.html)
The Following software is optional but recommended:
* Matplotlib
* libsbml
* libxml2

libsbml is necessary to convert models written in SBML format to the PySCeS MDL. The
libsbml software requires a XML parser library which is libxml2 by default.

4.1 Windows

Use the windows installer (StochPy-1.0.0-linux-1686.exe) in directory: /StochPy-1.0.0/

4.2 Linux/MAC OS/Cygwin

In the command line, as root (sudo -s):

$ cd /.../StochPy-1.0.0
$ python setup install

33

http://www.python.org/download/releases/2.7.2/
http://new.scipy.org/download.html

StochPy User Guide, Release 1.0.0

34 Chapter 4. Installation

CHAPTER
FIVE

CONFIGURATION

The StochPy package contains some example models, such as:
* Immigration-Death model
* Burst model
* Decaying-Dimerizing model
* Prokaryotic auto-regulation model

All these files are placed in the directory /home dir/Stochpy/pscmodels/ after the first usage of
the package. All these models are written in the PySCeS MDL. This PySCeS MDL is explained
in the PySCeS Model Description Language section. Of course, SBML models can be used as
input. A SBML2PySCeS format converter is available which is used automatically if a SBML
file is given as input.

35

StochPy User Guide, Release 1.0.0

36 Chapter 5. Configuration

Part V

The PySCeS Model Description Language

37

StochPy User Guide, Release 1.0.0

PySCeS: the Python Simulator for Cellular Systems is an extendable toolkit for the
analysis and investigation of cellular systems. It is available for download from:
http://pysces.sf.net

PySCeS uses an ASCII text based input file to describe a cellular system in terms of it’s stoi-
chiometry, kinetics, compartments and parameters. Input files may have any filename with the
single restriction that, for cross platform compatibility, they must end with the extension .psc.
In this document we describe the PySCeS Model Description Language (MDL) which has been
updated and extended for the PySCeS 0.7.x release.

PySCeS is distributed under the PySCeS (BSD style) license and is made freely
available as Open Source software. See LICENCE.txt for details.

We hope that you will enjoy using our software. If, however, you find any unexpected fea-
tures (i.e. bugs) or have any suggestions on how we can improve PySCeS and specifically the
PySCeS MDL please let us know.

39

http://pysces.sf.net

StochPy User Guide, Release 1.0.0

40

CHAPTER
SIX

DEFINING A PYSCES MODEL

6.1 A kinetic model

The basic description of a kinetic model in the PySCeS MDL contains the following informa-
tion:

whether any fixed (boundary) species are present
* the reaction network stoichiometry

* rate equations for each reaction step

» parameter and boundary species initial values

* the initial values of the variable species

Although it is in principle possible to define an ODE based model without reactions or free
species, for practical purposes PySCeS requires a minimum of a single reaction. Once this
information is obtained it can be organised and written as a PySCeS input file. While this list
is the minimum information required for a PySCeS input file the MDL allows the definition of
advanced models that contain compartments, global units, functions, rate and assignment rules.

6.2 Model keywords

In PySCeS 0.7.x it is now possible to define keywords that specify model information. Key-
words have the general form

<keyword>: <value>

The Modelname (optional) keyword, containing only alphanumeric characters (or _), describes
the model filename (typically used when the model is exported via the PySCeS interface mod-
ule) while the Description keyword is a (short) single line model description.

Modelname: rohwer sucrosel
Description: Sucrose metabolism in sugar cane (Johann M. Rohwer)

Two keywords are available for use (optional) with models that have one or more compartments
defined. Both take a boolean (True/False) as their value:

41

StochPy User Guide, Release 1.0.0

» Species_In_Conc specifies whether the species symbols used in the rate equations repre-
sent a concentration (True, default) or an amount (False).

* Output_In_Conc tells PySCeS to output the results of numerical operations in concentra-
tions (True, default) or in amounts (False).

Species_In_Conc: True
Output_In_Conc: False

More information on the effect these keywords have on the analysis of a model can be found in
the PySCeS Reference Manual.

6.3 Global unit definition

PySCeS 0.7 supports the (optional) definition of a set of global units. In doing so we have
chosen to follow the general approach used in the Systems Biology Modelling Language
(SBML L2V3) specification. The general definition of a PySCeS unit is: *<UnitType>:
<kind>, <multiplier>, <scale>, <exponent>"‘ where kind is a string describ-
ing the base unit (for SBML compatibility this should be an SI unit) e.g. mole, litre, second
or metre. The base unit is modified by the multiplier, scale and index using the following re-
lationship: <multiplier> * (<kind> * 10**<scale>)**<index>. The default unit definitions
are:

UnitSubstance: mole, 1, 0, 1
UnitVolume: litre, 1, 0, 1
UnitTime: second, 1, 0, 1
UnitLength: metre, 1, 0, 1
UnitArea: metre, 1, 0, 2

Please note that defining these values does not affect the numerical analysis of the model in any
way.

6.4 Symbol names and comments

Symbol names (i.e. reaction, species, compartment, function, rule and parameter names etc.)
must start with either an underscore or letter and be followed by any combination of alpha-
numeric characters or an underscore. Like all other elements of the input file names are case
sensitive:

R1

_subA
parlb
ext_1

Explicit access to the “current” time in a time simulation is provided by the special symbol
TIME. This is useful in the definition of events and rules (see chapter on advanced model
construction for more details).

42 Chapter 6. Defining a PySCeS model

StochPy User Guide, Release 1.0.0

Comments can be placed anywhere in the input file in one of two ways, as single line comment
starting with a # or as a multi-line triple quoted comment “”“

IERTEIN

<comment> .

everything after this is ignored

mmn

This is a comment
spread over a
few lines.

mmn

6.5 Compartment definition

By default (as is the case in all PySCeS versions < 0.7) PySCeS assumes that the model exists
in a single unit volume compartment. In this case it is not necessary to define a compartment
and the ODE’s therefore describe changes in concentration per time. However, if a compart-
ment is defined, PySCeS assumes that the ODE’s describe changes in substance amount per
time. Doing this affects how the model is defined in the input file (especially with respect
to the definitions of rate equations and species) and the user is strongly advised to read the
Users Guide before building models in this way. The compartment definition is as follows
Compartment: <name>, <size>, <dimensions>, where <name> is the unique
compartment id, <size> is the size of the compartment (i.e. length, volume or area) defined by
the number of <dimensions> (e.g. 1,2,3):

Compartment: Cell, 2.0, 3
Compartment: Memb, 1.0, 2

6.6 Function definitions

A new addition to the PySCeS MDL is the ability to define SBML styled functions. Simply put
these are code substitutions that can be used in rate equation definitions to, for example, sim-
plify the kinetic law. The general syntax for a function is Function: <name>, <args>
{<formula>} where <name> is the unique function id, <arglist> is one or more comma
separated function arguments. The <formula> field, enclosed in curly brackets, may only
make use of arguments listed in the <arglist> and therefore cannot reference model attributes
directly. If this functionality is required a forcing function (assignment rule) may be what you
are looking for.

Function: rmm_num, V£, s, p, Keqg {
Vix (s - p/Keq)
}

Function: rmm_den, s, p, Ks, Kp {
s + Ksx (1.0 + p/Kp)
}

6.5. Compartment definition 43

StochPy User Guide, Release 1.0.0

The syntax for function definitions has been adapted from Frank Bergmann and Herbert Sauro’s
“Human Readable Model Definition Language” (Draft 1).

6.7 Defining fixed species

Boundary species, also known as fixed or external species, are a special class of parameter used
when modelling biological systems. The PySCeS MDL fixed species are declared on a single
line as FIX: <fixedlist>. The <fixedlist> is a space separated list of symbol names
which should be initialised like any other species or parameter:

FIX: Fru_ex Glc_ex ATP ADP UDP phos glycolysis Suc_vac

If no fixed species are present in the model then this declaration should be omitted entirely.

6.8 Reaction stoichiometry and rate equations

The reaction stoichiometry and rate equation are defined together as a single reaction step.
Each step in the system is defined as having a name (identifier), a stoichiometry (substrates are
converted to products) and rate equation (the catalytic activity, described in terms of species
and parameters). All reaction definitions should be separated by an empty line. The general
format of a reaction in a model with no compartments is:

<name>:
<stoichiometry>
<rate equation>

The <name> argument follows the syntax as discussed in a previous section, however, when
more than one compartment has been defined it is important to locate the reaction in its specific
compartment. This is done using the @ operator:

<name>@<compartment>:
<stoichiometry>
<rate equation>

Where <compartment> is a valid compartment name. In either case this then followed either
directly (or on the next line) by the reaction stoichiometry.

Each <stoichiometry> argument is defined in terms of reaction substrates, appearing on the left
hand side and products on the right hand side of an identifier which labels the reaction as either
reversible (=) or irreversible (>). If required each reagent’s stoichiometric coefficient (PySCeS
accepts both integer and floating point) should be included in curly braces {} immediately
preceding the reagent name. If these are omitted a coefficient of one is assumed:

{2.0}Hex P = Suc6P + UDP # reversible reaction
Fru ex > Fru # irreversible reaction
species_5 > $pool # a reaction to a sink

The PySCeS MDL also allows the use of the $pool token that represents a placeholder reagent
for reactions that have no net substrate or product. Reversibility of a reaction is only used when

44 Chapter 6. Defining a PySCeS model

StochPy User Guide, Release 1.0.0

exporting the model to other formats (such as SBML) and in the calculation of elementary
modes. It does not affect the numerical evaluation of the rate equations in any way.

Central to any reaction definition is the <rate equation> (SBML kinetic law). This should be
written as valid Python expression and may fall across more than one line. Standard Python
operators + — * / xx are supported (note the Python power e.g. 24 is written as 2%*4).
There is no shorthand for multiplication with a bracket so -2(a+b) h would be written as -
2*(a+b)**h} and normal operator precedence applies:

+, - addition, subtraction

* multiplication, division
+X,-X | positive, negative

ok exponentiation

Operator precedence increase from top to bottom and left to right (adapted from the Python
Reference Manual).

The PySCeS MDL parser has been developed to parse and translate different styles of infix into
Python/Numpy based expressions, the following functions are supported in any mathematical
expression:

* log, loglO0, In, abs

* pow, exp, root, sqrt

e sin, cos, tan, sinh, cosh, tanh

e arccos, arccosh, arcsin, arcsinh, arctan, arctanh
* floor, ceil, ceiling, piecewise

* notanumber, pi, infinity, exponentiale

Logical operators are supported in rules, events etc but not in rate equation definitions. The
PySCeS parser understands Python infix as well as ibSBML and NumPy prefix notation.

¢ and or xor not

* > gt(x,y) greater(x,y)

<lt(x,y) less(x,y)

* >=ge(X,y) geq(x,y) greater_equal(x,y)
o <=le(x,y) leq(x,y) less_equal(x,y)

* ==eq(x,y) equal(x,y)

* !=neq(x,y) not_equal(x,y)

Note that currently the MathML delay and factorial functions are not supported. Delay is
handled by simply removing it from any expression, e.g. delay(f(x), delay) would be parsed
as f(x). Support for piecewise has been recently added to PySCeS and will be discussed in the
advanced features section.

A reaction definition when no compartments are defined:

6.8. Reaction stoichiometry and rate equations 45

StochPy User Guide, Release 1.0.0

R5: Fru + ATP = Hex_ P + ADP
Fru/Ki5_Fru) * (Fru/Km5_Fru) = (ATP/Km5_ATP) / (1 +
Vmax5/ (1 + Fru/Ki5_Fru) * (Fru/Km5_Fru) » (ATP/Km5_ATP) /(1 +
Fru/Km5_Fru + ATP/Km5_ATP + Fru*xATP/ (Km5_FruxKm5_ ATP) +
ADP/Ki5_ADP)

and using the previously defined functions:

RG6:
A =B
rmm_num(V2,A,B,Keq2) /rmm_den (A, B, K2A, K2B)

When compartments are defined note how now the reaction is now given a location and that
because the ODE’s formed from these reactions must be in changes in substance per time the
rate equation is multiplied by its compartment size. In this particular example the species
symbols represent concentrations (Species_In_Conc: True):

R1@Cell:
sl = s2
Cell* (Vfl* (sl — s2/Keqgl)/ (sl + KS1*(1 + s2/KP1l)))

If Species_In_Conc: True the location of the species is defined when it is initialised and will
be explained later in this manual. The following example shows the species symbols explicitly
defined as amounts (Species_In_Conc: False):

R4@Memb: s3 = s4
Membx (V4 ((s3/Memb) - (s4/Cell)/Keqgd)/ ((s3/Memb)
+ KS4x (1 + (s4/Cell)/KP4)))

Please note that at this time we are not certain if this form of rate equation is translatable into
valid SBML in a way that is interoperable with other software.

6.9 Species and parameter initialisation

The general form of any species (fixed, free) and parameter is simply:

property = value

Initialisations can be written in any order anywhere in the input file but for human readability
purposes these are usually placed after the reaction that uses them or grouped at the end of the
input file. Both decimal and scientific notation is allowed with the following provisions that
neither floating point (/.) nor scientific shorthand (/.e-3) syntax should be used, instead use
the full form (1.0e-3), (0.001) or (1.0).

Variable or free species are initialised differently depending on whether compartments are
present in the model. While in essence the variables are set by the system parameters the

Although the variable species concentrations are determined by the parameters of the sys-
tem, their initial values are used in various places, calculating total moiety concentrations (if
present), time simulation initial values (e.g. time=zero) and as initial guesses for the steady-
state algorithms. If an empty initial species pool is required it is not recommended to initialise

46 Chapter 6. Defining a PySCeS model

StochPy User Guide, Release 1.0.0

these values to zero (in order to prevent potential divide-by-zero errors) but rather to a small
value (e.g. 10%*-8).

For a model with no compartments these initial values assumed to be concentrations:

NADH = 0.001
ATP = 2.3e-3
sucrose = 1

In a model with compartments it is expected that the species are located in a compartment (even
if Species_In_Conc: False) this is done useing the @ symbol:

sl@Memb = 0.01
s2@QCell 2.0e-4

A word of warning, the user is responsible for making sure that the units of the initialised
species match those of the model. Please keep in mind that all species (and anything that
depends on them) is defined in terms of the Species_In_Conc keyword. For example, if the
preceding initialisations were for R/ (see Reaction section) then they would be concentrations
(as Species_In_Conc: True). However, in the next example, we are initialising species for R4
and they are therefore in amounts (Species_In_Conc: False):

S3@Memb
s4@Cell

1.0
2.0

Fixed species are defined in a similar way and although technically a parameter, they should be
given a location in compartmental models:

InitExt
X0 = 10.0
X4@Cell = 1.0

However, fixed species are true parameters in the sense that their associated compartment size
does not affect their value when it changes size. If compartment size dependent behaviour is
required an assignment or rate rule should be considered.

Finally, the parameters should be initialised. PySCeS checks if a parameter is defined that is
not present in the rate equations and if such parameter initialisations are detected a harmless
warning is generated. If, on the other hand, an uninitialised parameter is detected a warning is
generated and a value of 1.0 assigned:

InitPar
vE2 = 10.0
Ks4d = 1.0

6.9. Species and parameter initialisation 47

StochPy User Guide, Release 1.0.0

48 Chapter 6. Defining a PySCeS model

CHAPTER
SEVEN

ADVANCED MODEL CONSTRUCTION

7.1 Assignment rules

Assignment rules or forcing functions are used to set the value of a model attribute before the
ODE’s are evaluated. This model attribute can either be a parameter used in the rate equa-
tions (this is traditionally used to describe an equilibrium block) a compartment or an arbitrary
parameter (commonly used to define some sort of tracking function). Assignment rules can
access other model attributes directly and have the generic form !F <par> = <formula>.
Where <par> is the parameter assigned the result of <formula>. Assignment rules can be
defined anywhere in the input file:

!F S_V_Ratio = Mem_Area/Vcyt
'F sigma_test = sigma_Px*Pmem + sigma_LxLmem

These rules would set the value of <par> which whose value can be followed with using the
simulation and steady state extra_data functionality.

7.2 Rate rules

PySCeS now includes support for rate rules which are essentially directly encoded ODE’s
which are evaluated after the ODE’s defined by the model stoichiometry and rate equations.
Unlike the SBML rate rule, PySCeS allows one to access a reaction symbol in the rate rules
(this is automatically expanded when the model is exported to SBML). The general form of a
rate rule is RateRule: <par> {<function>}. Where <name> is the model attribute
(e.g. compartment or parameter) whose rate of change is described by the <formula>. It may
also be defined anywhere in the input file:

RateRule: Mem_Area {

(sigma_P) * (Mem_Areax*kdx (P)) + (sigma_L)* (Mem_Areaxk5x* (L))

}

RateRule: Vecyt {(1.0/Co)*x(R1()+(1-ml)*R2()+(1-m2)*R3()-R4()-R5())}

Remember to initialise any new parameters used in the rate rules.

49

StochPy User Guide, Release 1.0.0

7.3 Events

Time dependant events may now be defined whose definition follows the event framework
described in the SBML L2V1 specification. The general form of an event is Event: <name>,
<trigger>, <delay> { <assignments> }. As can be seen an event consists of essentially three
parts, a conditional <trigger>, a set of one or more <assignments> and a <delay> between
when the trigger is fired (and the assignments are evaluated) and the eventual assignment to the
model. Assignments have the general form <par> = <formula>. Events have access to the
“current” simulation time using the _7IME_ symbol:

Event: eventl, _TIME_ > 10 and A > 150.0, 0 {
V1l = Vlsxvfact

V2 = V2*vfact

}

The following event illustrates the use of a delay of ten time units as well as the prefix notation
(used by libSBML) for the trigger (PySCeS understands both notations):

Event: event2, geqg(_TIME_, 15.0), 10 {
V3 = V3xvfact2
}

Note: in order for PySCeS to handle events it is necessary to have the PySundials installed

7.4 Piecewise

Although technically an operator piecewise functions are sufficiently complicated to warrant
their own section. A piecewise operator is essentially an if, elif, ..., else logical operator that
can be used to conditionally “set” the value of some model attribute. Currently piecewise is
supported in rule constructs and has not been tested directly in rate equation definitions. The
piecewise function’s most basic incarnation is piecewise(<vall>, <cond>, <val2>) which is
evaluated as:

if <cond>:

return <vall>
else:

return <val2>

alternatively, piecewise(<vall>, <condl>, <val2>, <cond2>, <val3>, <cond3>):

if <condl>:
return <vall>

elif <cond2>:
return <vall>

elif <cond3>:
return <val3>

or piecewise(<vall >, <condl>, <val2>, <cond2>, <val3>, <cond3>, <val4>):

50 Chapter 7. Advanced model construction

StochPy User Guide, Release 1.0.0

if <condl>:
return <vall>
elif <cond2>:
return <val2>
elif <cond3>:
return <val3>
else:
return <valéd>

can also be used. A “real-life” example of an assignment rule with a piecewise function:

'F Ca2plus=piecewise (0.1, 1t (_TIME_,60), 0.1, gt (_TIME_,66.0115), 1)

In principle there is no limit on the amount of conditional statements present in a piecewise
function, the condition can be a compound statements a or b and ¢ and may include the _TIME_
symbol.

7.5 Reagent placeholder

Some models contain reactions which are defined as only have substrates or products:
Rl: A + B >
R2: > C + D

The implication is that the relevant reagents appear or disappear from or into a constant pool.
Unfortunately the PySCeS parser does not accept such an unbalanced reaction definition and
requires these pools to be represented as a Spool token:

Rl: A + B > Spool
R2: S$pool > C + D

$pool is neither counted as a reagent nor does it ever appear in the stoichiometry (think of it
as dev/null) and no other $<str> tokens are allowed.

7.5. Reagent placeholder 51

StochPy User Guide, Release 1.0.0

52 Chapter 7. Advanced model construction

CHAPTER
EIGHT

8.1 Basic model definition

PySCeS test model pysces_test_linearl.psc:

EXAMPLE STOMPY INPUT FILES

FIX: x0 x3
Rl1: x0 = s0
klxx0 - k2%s0
R2: s0 = sl
k3%s0 - kdxsl
R3: sl = s2
k5%sl - k6%s2
R4: s2 = x3
k7xs2 — k8xx3
InitExt
x0 = 10.0
x3 = 1.0
InitPar
kl = 10.0
k2 = 1.0
k3 = 5.0
k4 = 1.0
k5 = 3.0
ke = 1.0
k7 = 2.0
kg = 1.0
InitVar
sO = 1.0
sl = 1.0
s2 = 1.0

53

StochPy User Guide, Release 1.0.0

8.2 Advanced example

This model includes the use of Compartments, KeyWords, Units and Rules:

Modelname: MWC_wholecell2c
Description: Surovtsev whole cell model using J-HS Hofmeyr’s framework

Species_In_Conc: True
Output_In_Conc: True

Global unit definition
UnitVolume: litre, 1.0, -3, 1
UnitSubstance: mole, 1.0, -6, 1
UnitTime: second, 60, 0, 1

Compartment definition
Compartment: Vcyt, 1.0, 3
Compartment: Vout, 1.0, 3
Compartment: Mem_ Area, 5.15898, 2

FIX: N

R1@Mem_Area: N = M
Mem_Areaxklx* (Pmem) x (N/Vout)

R2@Vcyt: {244}M = P # ml
Veyt«k2« (M)

R3@Vcyt: {42}M = L # m2
Veyt«k3* (M) « (P) %2

R4@Mem_Area: P = Pmem
Mem_Areaxkd* (P)

R5@Mem_Area: L = Lmem
Mem_Areaxk5=* (L)

Rate rule definition
RateRule: Vecyt {(1.0/Co)*(R1()+(1-ml)*R2()+(1-m2)*R3()-R4()-R5())}
RateRule: Mem_Area { (sigma_P)+*R4() + (sigma_L)~*R5()}

Rate rule initialisation

Co = 3.07e5 # uM p_env/ (R+T)

ml = 244

m2 = 42

sigma_P = 0.00069714285714285711
sigma_L = 0.00012

Assignment rule definition
!F S_V_Ratio = Mem_Area/Vcyt
'F Mconc = (M)/M_init

54 Chapter 8. Example StoMPy input files

StochPy User Guide, Release 1.0.0

'F Lconc = (L)/L_init
!F Pconc (P)/P_1init

Assignment rule initialisations
M_init = 199693.0

IL_init = 102004
P_init = 5303
Mconc = 1.0
Lconc = 1.0
Pconc = 1.0

Species initialisations
N@Vout = 3.07e5
Pmem@Mem_Area = 37.38415

Lmem@Mem_Area = 8291.2350678770199

M@Vcyt = 199693.0
L@Vcyt = 102004
P@Vcyt 5303

Parameter initialisations
k1l = 0.00089709

k2 = 0.000182027
k3 = 1.7539e-010
kd = 5.0072346e-005
k5 = 0.000574507164

mmnn

Simulate this model to 200 for maximum happiness and
watch the surface to volume ratio and scaled concentrations.

mmnn

This example illustrates almost all the new features included in the PySCeS MDL. Although
it may be slightly more complicated than the basic model described above it is still, by our

definition, certainly human readable.

8.2. Advanced example

55

StochPy User Guide, Release 1.0.0

56 Chapter 8. Example StoMPy input files

Part VI

StochPy Module documentation

57

CHAPTER
NINE

STOCHASTIC SIMULATION MODULE

The main module of StochPy

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: September 19, 2011

class stochpy.StochSim.SSA (Method="Direct’, File=None, dir=None,
Mode="steps’, End=1000, Trajectories=1,
IsTestsuite=False, Isinteractive=True, IsTrack-
Propensities=False, IsRun=False)

Input options:

e Method [default = ‘Direct’] Available methods: ‘Direct’, ‘FirstReaction-
Method’, TauLeaping’,’ Next Reaction Method’

* File: [default = ImmigrationDeath.psc]
* dir: [default = /home/user/stochpy/pscmodels/ImmigrationDeath.psc]

* Mode: [default = ‘steps’] simulation for a total number of ‘steps’ or until a
certain end ‘time’ (string)

* End: [default = 1000] end of the simulation (number of steps or end time)
(float)

* *Trajectories*L [default = 1] (integer)
 TrackPropensities: [default = False] (Boolean)

Usage (with High-level functions): >>> mod = stochpy.SSA() >>>
help(mod) >>> mod.Model(File = ‘filename.psc’, dir = °*../) >>>
mod.Method(‘Direct’) >>> mod.Reload() >>> mod.Trajectories(5)
>>> mod.Timesteps(10000) >>> mod.TrackPropensities() >>>
mod.DoStochSim() >>> mod.DoStochSim(end=1000,mode =
‘steps’,trajectories = 5, method = ‘Direct’) >>> mod.PlotTimeSim()
>>> mod.PlotPropensities() >>> mod.PlotInterpolatedData() >>>
mod.PlotWaitingtimes() >>> mod.PlotDistributions() >>> mod.ShowMeans()
>>> mod.ShowStandardDeviations() >>> mod.ShowOverview() >>>
mod.ShowSpecies() >>> mod.DoTestsuite()

DeleteTempfiles ()
Deletes all .dat files

59

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

DoStochSim (end=False, mode=False, method=False, trajectories=False, ep-

silon=0.03)
doStochSim(end=10, mode="steps’, method="Direct’)

Run a stochastic simulation for until end is reached. This can be either time steps
or end time (which could be a HUGE number of steps).

Input:

end [default=1000] simulation end (steps or time)

mode [default="steps’] simulation mode, can be one of:

steps total number of steps to simulate

¢ time simulate until time is reached

method [default="Direct’] stochastic algorithm, can be one of:

¢ Direct

¢ FirstReactionMethod

¢ NextReactionMethod

* Taul.eaping
DoTestsuite (epsilon_=0.01)

Do 10000 simulations untill t=50 and print the interpolated result for t = 0,1,2,...,50
Input:

eepsilon_: useful for Tau-Leaping simulations (float)

Endtime (¢)
Set the end time olf exact realization of the Markov jump process Input:

*f: end time (float)

GetDistributions ()
Get for each trajectory the distribution of each species

GetInterpolatedData ()
Perform linear interpolation for each generated trajectory. Linear interpolation is
done for all integer time points, between the start time (0) end the endtime.

GetMeanWaitingtimes ()
Get the mean waiting times for the selected trajectory

GetMeans ()
Get the means of each species for the selected trajectory

GetStandardDeviations ()
Get the standard deviations of each species for the selected trajectory

GetTrajectoryData (n=1)
Switch to another trajectory, by default, the last trajectory is accesible Input:

60

Chapter 9. Stochastic Simulation Module

StochPy User Guide, Release 1.0.0

*n: [default = 1] get data from a certain trajectory

GetWaitingtimes ()
Get for each reaction the waiting times

MeanWaitingtimes ()
OId Version

Method (method)

Input:
* method

Select one of the following four methods:
* Direct
* FirstReactionMethod
* NextReactionMethod
* TaulLeaping

Note: input must be a string —> ‘Direct’

Mode (sim_mode="steps’)
Run a stochastic simulation for until end is reached. This can be either time steps
or end time (which could be a HUGE number of steps).

Input:
* sim_mode: [default = ‘steps’] ‘time’ or ‘steps’
e end: [default = 1000]

Model (File, dir=None)
High-level function to determine the model which can be used for stochastic simu-
lations Input:

*File:’ filename.psc’ (string)
edir: [default = None] the directory of where File lives

PlotDistributions (species2plot=True, linestyle="dotted’, title="StochPy

_ ~ Distribution Plot’) . o
Plot obtained distributions for each generated trajectory Default: PlotDistributions()

plots distributions for each species

Input:
* species2plot [default = True] as a list [’'S1°,S2’]
* linestyle [default = ‘dotted’]
* title [default = ‘StochPy Distribution Plot’]

PlotInterpolatedData (linestyle="dotted’, title="StochPy Interpolated
Time Plot (# of trajectories =)’)
Plot the averaged interpolation result. For each time point, the mean and standard

61

StochPy User Guide, Release 1.0.0

deviation are plotted Input:
elinestyle [default = ‘dotted’] dashed, solid, and dash_dot (string)
ofitle [default = StochPy Interpolated Time (# of trajectories = ...) Plot

PlotPropensities (rates2plot=True, linestyle="dotted’, title="StochPy

Propensities Plot’)
Plot time simulation output for each generated trajectory

Default: PlotPropensities() plots propensities for each species
Input:
* rates2plot [default = True]: species as a list ['S1°,’S2’]
* linestyle [default = ‘dotted’]: dashed, dotted, and solid
* title [default = ‘StochPy Propensities Plot’]

PlotTimeSim (species2plot=True, linestyle="dotted’, title="StochPy Time Sim-

ulation Plot’)
Plot time simulation output for each generated trajectory Default: PlotTimeSim()

plots time simulation for each species

Input:
* species2plot: [default = True] as a list [’S1°,S2’]
* linestyle: [default = ‘dotted’] dashed, solid, and dash_dot (string)
e title: [default =]

PlotWaitingtimes (rates2plot=True, linestyle="dotted’, title="StochPy Wait-
ingtimes Plot’)
Plot obtained waiting times default: PlotWaitingtimes() plots waiting times for all
rates

Input:
* rates2plot: [default = True] as a list of strings [’R17,’R2”’]
e linestyle: [default = ‘dotted’] dashed, dotted, dash_dot, and solid
* title [default = ‘StochPy Waitingtimes Plot’]

PrintDistributions ()
Print obtained distributions for each generated trajectory

PrintInterpolatedData ()
Analyse the interpolated output for each generated trajectory

PrintMeanWaitingtimes ()
Print the mean waiting times for the selected trajectory

PrintPropensities ()
Print time simulation output for each generated trajectory

PrintTimeSim ()
Print time simulation output for each generated trajectory

62 Chapter 9. Stochastic Simulation Module

StochPy User Guide, Release 1.0.0

PrintWaitingtimes ()
Print obtained waiting times

Reload ()
Reload the entire model again. Usefull if the modelfile has changed

Run (end=False, mode=False, method=False, trajectories=False)
Old version

ShowMeans ()
Print the means of each species for the selected trajectory

ShowOverview ()
Print an overview of the current settings

ShowSpecies ()
Print the species of the model

ShowStandardDeviations ()
Print the standard deviations of each species for the selected trajectory

Timesteps (s)
Set the number of time steps to be generated for each trajectory Input:

*s: number of time steps (integer)

TrackPropensities (boolean=True)
Track the propensities through time

Input:
e boolean: [default = True]

Trajectories (traj)
Set the number of trajectories to be generated Input:

*fraj: number of trajectories (integer)

Write2File (what="TimeSim’, to=None)
Write output to a file

Input:

* what: [default = TimeSim] TimeSim, Propensities, Distribu-
tions, Waitingtimes, and Interpol

* to: [default = None] Directory/outputname (optional)

stochpy.StochSim.usage ()

63

StochPy User Guide, Release 1.0.0

64 Chapter 9. Stochastic Simulation Module

CHAPTER
TEN

DIRECT METHOD

This program performs the direct Stochastic Simulation Algorithm from Gillespie (1977)
[1].This algorithm is used to generate exact realizations of the Markov jump process. Of course,
the algorithm is stochastic, so these realizations are different for each run. Only molecule pop-
ulations are specified. Positions and velocities, such as in Molecular Dynamics (MD) are ig-
nored. This makes the algorithm much faster, because non-reactive molecular collisions can
be ignored. Still, this exact SSA is quite slow, because it insists on simulating every individual
reaction event, which takes a lot of time if the reactant population is large. Furthermore, even
larger problems arise if the model contains distinct processes operating on different time-scales

[2].

[1] Gillespie D.T (1977), “Exact stochastic simulation of coupled chemical reactions”, J.Phys.
Chem. 81:2340-2361 [2] Wilkinson D.J (2009), “Stochastic Modelling for quantitative descrip-
tion of heterogeneous biological systems”, Nat Rev Genet; 0(2):122-133

class stochpy.DirectMethod.DirectMethod (File, dir, OutputDir, TempDir)
Direct Stochastic Simulation Algorithm from Gillespie (1977) [1].

This algorithm is used to generate exact realizations of the Markov jump process. Of
course, the algorithm is stochastic, so these realizations are different for each run.

[1] Gillespie D.T (1977), “Exact stochastic simulation of coupled chemical reactions”,
J.Phys. Chem. 81:2340-2361

Input:
* File: filename.psc
* dir: /home/user/Stochpy/pscmodels/filename.psc
* QutputDir: /home/user/Stochpy/
e TempDir

AssignmentRules (timestep)
Builds the assignment rules Input:

-timestep: integer

DoEvent ()
Do the event of the model

65

StochPy User Guide, Release 1.0.0

Execute (Trajectories, Endtime, Timesteps, TrackPropensities)
Generates T trajectories of the markov jump process.

Input:
* Trajectories: Number of trajectories
* Endtime
» Timesteps
* TrackPropensities: (boolean)
Endtime or Timesteps is infinite

GetEventAtAmount ()
Get amount where events happen

GetEventAtTime ()
Get times where events happen

Initial Conditions ()
This function initiates the output format with the initial concentrations

MonteCarlo ()
Monte Carlo step to determine tau

Parse (File, dir)
Parses the PySCeS MDL input file, where the model is desribed

Input:
* File: filename.psc
* dir: /home/user/Stochpy/pscmodels/filename.psc

Propensities ()
Determines the propensities to fire for each reaction at the current time point. At
t=0, all the rate equations are compiled.

ReactionExecution ()
Function that executes the selected reaction that will fire once

ReactionSelection ()
Function which selects a reaction that will fire once

Run ()
Calculates a time step of the Direct Method

rateFunc (rate_eval_code, r_vec)
Calculate propensities from the compiled rate equations

Input:
* rate_eval_code: compiled rate equations

* r_vec: output for the calculated propensities

66 Chapter 10. Direct Method

CHAPTER
ELEVEN

FIRST REACTION METHOD

This module performs the first reaction method Stochastic Simulation Algorithm from Gillespie
(1977).

This algorithm is used to generate exact realizations of the Markov jump process. Of course,
the algorithm is stochastic, so these realizations are different for each run.

Only molecule populations are specified. Positions and velocities, such as in Molecular Dy-
namics (MD) are ignored. This makes the algorithm much faster, because non-reactive molec-
ular collisions can be ignored.different Still, this exact SSA is quite slow, because it insists
on simulating every individual reaction event, which takes a lot of time if the reactant popula-
tion is large. Furthermore, even larger problems arise if the model contains distinct processes
operating on different time-scales.

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: 18 September, 2011

class stochpy.FirstReactionMethod.FirstReactionMethod (File, dir,
Out-
putDir,

TempDir)
First Reaction Method from Gillespie (1977)

This algorithm is used to generate exact realizations of the Markov jump process. Of
course, the algorithm is stochastic, so these realizations are different for each run.

Input:
* File: filename.psc
* dir: /home/user/Stochpy/pscmodels/filename.psc
* OutputDir: /home/user/Stochpy/
» TempDir

AssignmentRules (fimestep)
Builds the assignment rules Input:

-timestep: integer

DoEvent ()
Do the event of the model

67

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Execute (Trajectories, Endtime, Timesteps, TrackPropensities)
Generates T trajectories of the markov jump process. Input:

*Number of trajectories
*Boolean for time or number of time steps simulation
*Number of time steps or the endtime

GetEventAtAmount ()
Get amount where events happen

GetEventAtTime ()
Get times where events happen

InitialStep ()
Monte Carlo step to determine all taus

Initial Conditions ()
This function initiates the output format with the initial concentrations

Parse (File, dir)
Parses the PySCeS MDL input file, where the model is desribed

Input:
* File: filename.psc
* dir: /home/user/Stochpy/pscmodels/filename.psc

Propensities ()
Determines the propensities to fire for each reaction at the current time point. At
t=0, all the rate equations are compiled.

ReactionExecution ()
Function that executes the selected reaction that will fire once

ReactionSelection ()
Function which selects a reaction that will fire once

Run ()
Perform a direct SSA time step and pre-generate M random numbers

rateFunc (rate_eval_code, r_vec)
Calculate propensities from the compiled rate equations

Input:
* rate_eval_code: compiled rate equations

* r_vec: output for the calculated propensities

68 Chapter 11. First Reaction Method

CHAPTER
TWELVE

NEXT REACTION METHOD

This module performs the Next Reaction Method from Gibson and Bruck [1]. Therefore, it is
also called the Gibson and Bruck algorithm.

[1] M.A. Gibson and J. “Bruck Efficient Exact Stochastic Simulation of Chemical Systems with
Many Species and Many Channels”, J. Phys. Chem., 2000,104,1876-1889

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: September 18, 2011

class stochpy.NextReactionMethod.NextReactionMethod (File, dir,
OutputDir,
TempDir)

Next Reaction Methfod from Gibson and Bruck [1].
Input:
* File: filename.psc
* dir: /home/user/Stompy/pscmodels/filename.psc
* Outputdir: /home/user/Stompy/

[1] M.A. Gibson and J. “Bruck Efficient Exact Stochastic Simulation of Chem-
ical Systems with Many Species and Many

Channels”, J. Phys. Chem., 2000,104,1876-1889

AssignmentRules (timestep)
Builds the assignment rules Input:

-timestep: integer

BuildInits ()
Build initials that are necessary to generate a trajectory

DoEvent ()
Do the event of the model

Execute (Trajectories, Endtime, Timesteps, TrackPropensities)
Generates T trajectories of the markov jump process. Input:

*Trajectories: Number of trajectories (integer)

69

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

*Endtime
*Timesteps
*TrackPropensities (Boolean)

GetEventAtAmount ()
Get amount where events happen

GetEventAtTime ()
Get times where events happen

InitialStep ()
Monte Carlo step to determine all taus and to create a binary heap

Initial Conditions ()
This function initiates the output format with the initial concentrations

Parse (File, dir)
Parses the PySCeS MDL input file, where the model is desribed

Input:
* File: filename.psc
* dir: /home/user/Stompy/pscmodels/filename.psc

Propensities ()
Determines the propensities to fire for each reaction at the current time point. At
t=0, all the rate equations are compiled.

ReactionExecution ()
Function that executes the selected reaction that will fire once

ReactionSelection ()
Function which selects a reaction that will fire once

Run ()
Perform a direct SSA time step and pre-generate M random numbers

UpdateHeap ()
This function calculates new tau values for reactions that are changed. After this
calculations, the binary heap is updated, which is much more efficient then rebuild-
ing the entire heap.

rateFunc (rate_eval_code, r_vec)
Calculate propensities from the compiled rate equations

Input:
* rate_eval_code: compiled rate equations

* r_vec: output for the calculated propensities

70 Chapter 12. Next Reaction Method

CHAPTER
THIRTEEN

OPTIMIZED TAU-LEAPING

This program performes Optimized Expliced Tau-leaping algorithm, which is an approximate
version of the exact Stochastic Simulation Algorithm (SSA). Here, an efficient step size selec-
tion procedure for the tau-leaping method [1] is used.

[1] Cao. Y, Gillespie D., Petzold L. (2006), “Efficient step size selection for the tau-leaping
method”, J.Chem. Phys. 28:124-135

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: September 18, 2011

stochpy.Tauleaping.DetermineOrderHOR (rate_vector, reactants)
Determines once the order of each reaction and the highest order of reaction (HOR) for
each species.

Input:

* rate_vector: (list)

* *reactants: nested list
Output:

* orders

* HORs

* HOR-info

stochpy.TaulLeaping.GetSample (probs)
This function extracts a sample from a list of probabilities. The ‘extraction chance’ is
identical to the probability of the sample.

Input:

* probs: list
Output:

* sample

* sample index

stochpy.TaulLeaping.MinPositiveValue (List)
This function determines the minimum positive value

71

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Input:
* List
Output:
* minimum positive value
class stochpy.TaulLeaping.OTL (File, dir, OutputDir, TempDir)
Input:
* File = filename.psc
* dir = /home/user/Stochpy/pscmodels/filename.psc
* Qutputdir = /home/user/Stochpy/

AssignmentRules (timestep)
Builds the assignment rules Input:

-timestep: integer

CriticalReactions ()
Determines the critical reactions (as a boolean vector)

DetermineMethod ()
Determines for each time step what to perform: exact of approximate SSA

DoEvent ()
Do the event of the model

Execute (Trajectories, Endtime, Timesteps, TrackPropensities, epsilon=0.03)
Generates T trajectories of the markov jump process.

Input:
* Number of trajectories
* Boolean for time or number of time steps simulation
* Number of time steps / endtime

Execute_K Reactions ()
Perform the determined K reactions

GetAOc ()
Calculate the total propensities for all critical reactions

GetEventAtAmount ()
Get amount where events happen

GetEventAtTime ()
Get times where events happen

GetG (orders, hors, hor_info)
Determine the G vector

Input:

72 Chapter 13. Optimized Tau-Leaping

StochPy User Guide, Release 1.0.0

* orders
* hors: highest order of reaction for each species
* hor_info

GetK ()
Determines the K-vector, which describes the number of firing reactions for each
reaction.

GetMuVar (a_mu)
Calculate the estimaters of mu and var for each species (i)

Input:
e a(mu): list

GetTauPrime ()
Calculate tau’

GetTauPrimePrime ()
Calculate Tau’*

Initial Conditions ()
This function initiates the output format with the initial concentrations

MonteCarlo ()
Monte Carlo step to determine tau

Parse (File, dir)
Parses the PySCeS MDL input file, where the model is desribed

Input:
* File = filename.psc
* dir = /home/user/Stochpy/pscmodels/filename.psc

Propensities ()
Determines the propensities to fire for each reaction at the current time point. At
t=0, all the rate equations are compiled.

ReactionExecution ()
Function that executes the selected reaction that will fire once

ReactionSelection ()
Function which selects a reaction that will fire once

RunExactSSA ()
Perform a direct method SSA time step

rateFunc (rate_eval_code, r_vec)
Calculate propensities from the compiled rate equations

Input:
* compiled rate eqs

* r_vec: output for the calculated propensities

73

StochPy User Guide, Release 1.0.0

74 Chapter 13. Optimized Tau-Leaping

CHAPTER
FOURTEEN

ANALYSIS

This module provides functions for Stochastic Simulation Algorithms Analysis (SSAA). Im-
plemented SSAs import this module to perform their analysis. It plots time simulations, distri-
butions and waiting times.

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200 @users.sourceforge.net Last Change: September 15, 2011

stochpy.modules.Analysis.BuildDistributions (data_stochsim)
Builds distributions for each molecule/species/metabolite.

Input:

* data_stochsim: data object that stores all simulation data
Output:

* data_stochsim: distributions are attached to the data object

The dictionairy keys refer to a molecular count and the values to the probability for that
particular count.

Note: Use Distributions from the class CreatePlots to plot these distributions.
stochpy.modules.Analysis.Count (data_, edges_)
Input:
e data_
* edges_

class stochpy.modules.Analysis.DoPlotting (species_labels, rate_labels)
This class initiates the plotting options.

Input:
* species vector: [S1,S2 .. Sn]
e rate names: [R1, R2 .. Rm]

AverageTimeSimulation (means_set, sds_set, time, linestyle, title)
Plots the interpolated time simulation results. Makes use of the ObtainInterpola-
tionResults function, which determines the input for this function out of the SSA
output.

75

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Input:
* means_set: nested list
¢ sds_set: nested list
* time: list
* linestyle: linestyle (string)
* title

Distributions (distributions, species2plot, traj_index, linestyle, title)
Plots the distributions of the simulated metabolites/molecules.

Input:
* distributions
* species2plot
* traj_index
* linestyle
* title
Makes use of the output of BuildDistributions()

Propensities (data_stochsim, rates2plot, traj_index, linestyle, title)
Tracks the propensities through time

Input:
* data_stochsim
* rates2plot
* traj_index
* linestyle
e title

ResetPlotnum ()
Reset figure numbers if trajectories > 1

TimeSimulation (data, species2plot, traj_index, linestyle, title)
Time simulation plot

Input:
e data_stochsim
* species2plot
* traj_index

* linestyle

title

76 Chapter 14. Analysis

StochPy User Guide, Release 1.0.0

Waitingtimes (waiting_times, rates2plot, traj_index, linestyle, title)
Plots the waiting times for each reaction in the model. Makes use of ObtainWait-
ingtimes to derive the waiting times out of the SSA output.

Input:

* waiting times

rates2plot

* traj_index

linestyle
e title

stochpy.modules.Analysis.LogBin (data, factor)
Function that creates log bins

Input:

* data: list

* factor : float (determines the width of the bins)
Output:

e x: x-values (list)

* y: y-values (list)

* nbins: number of bins (integer)

stochpy.modules.Analysis.ObtainInterpolationResults (inferpolated_output,

points)
Gets the interpolated output after interpolation

Input:
* interpolated data: nested list
* points: integer time points of interpolation

stochpy.modules.Analysis.ObtainWaitingtimes (data_stochsim,

. _ num_reactions)
This function extracts the waiting times for each reaction of the model from the used

SSA output.

Input:
* data_stochsim: data object that stores all simulation data
* num_reactions: number of reactions (integer)

output:
* waiting times: nested list

Note: It is impossible to use this function in combination with the Tau-leaping method,
because the results are not exact! (Therefore, it does not work)

77

StochPy User Guide, Release 1.0.0

78 Chapter 14. Analysis

CHAPTER
FIFTEEN

INDEXED PRIORITY QUEUE (IPQ)

This module builds a index priority queue (IPQ) - Heap - which contains a lot of usefull func-
tions that can manipulate this heap so that it is not necessary to rebuild the whole heap if
something changes.

The Next Reaction Method from Gibson&Bruck uses such a heap to optimize the speed of the
exact stochastic simulation algorithm, which goes to log2(number of reactions) if the heap is
sparse.

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: January 22, 2010

class stochpy.modules.Heap.BinaryHeap (faus)
This class builds and manipulates a binary tree

GetChildren ()
Determine the possible children from a certain node. It returns the indices of the
children

GetParent ()
Determine the parents from a certain node. Note that it returns the indices of the
parents

Print ()
Print binary tree

Swap (rl, r2)
Swaps two nodes in the binary tree with indices rl and r2

Update_AUX (tau_node, j)
Update the binary tree. This function uses GetParent,GetChildren and Swap to
change the positions of nodes in the tree, so it does not build a new tree, but updates
some of the nodes, which is an advantage if the tree is sparse.

Input:
* tau: updated tau value
* j: reaction number

Note: This function is far from optimized

79

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

stochpy.modules.Heap.show_tree (tree, total_width=36, fill=" *)
Prints a tree

Input:
* tree
e total_width [default = 36]
* fil [default = © ‘]

80 Chapter 15. Indexed Priority Queue (IPQ)

CHAPTER
SIXTEEN

DNORM

Module which contains functions that can calculate the density for the normal distribution for
given x-values and it has the ability to normalize these densities.

See http://mathworld.wolfram.com/NormalDistribution.html/ for more information about the
normal distribution

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: Augustus 10, 2010

stochpy.modules.dnorm.dnorm (X, mu=0, sigma=1.5)
Named after the dnorm function from programming language R. Density generation for
the normal distribution with mean = mu and standard deviation = sigma. Input:

*x : vector or integer of ‘x-axis’ values
emu [default = 0]
ssigma [defaul = 1.5]

Output:
* float or list with floats containing the calculated values
stochpy.modules.dnorm.normalized_dnorm (X, mu=0, sigma=1.5)

Generate normalized values based on the maximum of the bell-shaped normal distribu-
tion. It uses the self defined dnorm function to calculate these values. Input:

*x : vector or integer of ‘x-axis’ values
emu [default = 0]

esigma [defaul = 1.5]*

Output:

* float or list with floats containing the calculated values

81

http://mathworld.wolfram.com/NormalDistribution.html/
mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

82 Chapter 16. DNORM

CHAPTER
SEVENTEEN

PYSCES MDL PARSER

The PySCeS parser is used to import a model written in the MDL of PySCeS. Further, all
required input do to stochastic simulations is build.

Written by Timo Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200 @users.sourceforge.net Last Change: September 15, 2011

class stochpy.PyscesMiniModel .Function (name, mod)
Function class ported from Core?2 to enable the use of functions in PySCeS.

addFormula (formula)
setArg (var, value=None)

class stochpy.PyscesMiniModel .IntegrationStochasticDataObj
This class is specifically designed to store the results of a stochastic time simulation It
has methods for setting the Time, Labels, Species and Propensity data and getting Time,
Species and Rate (including time) arrays. However, of more use:

*getOutput(*args) feed this method species/rate labels and it will return an array of
[time, spl, 1,]

egetDataAtTime(time) the data generated at time point “time”.

egetDatalnTimelnterval(time, bounds=None) more intelligent version of the above
returns an array of all data points where: time-bounds <= time <= time+bounds

getAllSimData (lbls=False)
Return an array of time + all available simulation data

Input:
* [bls [default=False] return only the data array or (data array, list of labels)

getDataAtTime (time)
Return all data generated at “time”

Input:
* time the required exact time point

getDataInTimelInterval (time, bounds=None)
Returns an array of all data in interval: time-bounds <= time <= time+bounds where
bound defaults to stepsize

83

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Input:
* time the interval midpoint
* bounds [default=None] interval halfspan defaults to stepsize

getPropensities (Ibls=False)
Return time+propensity array

Input:

* [bls [default=False] return only the time+propensity array or optionally
both the data array and a list of column label

getSimData (*args, **kwargs)
Feed this method species/xdata labels and it will return an array of [time, spl,]

Input:
* ‘speces_l’, ‘xdatal’ ...
* [bls [default=False] return only the data array or (data array, list of labels)

getSpecies (lbls=False)
Return an array fo time+species

Input: - Ibls [default=False] return only the time+species array or optionally both
the data array and a list of column label

getTime (/bls=False)
Return the time vector

Input:

* [bls [default=False] return only the time array or optionally both the time
array and time label

getWaitingtimes (lbls=False, traj= [])
Return waiting times, time+waiting_time array

Input:

* [bls [default=False] return only the time+waiting_time array or optionally
both the data array and a list of column label

* traj [default=[0]] return the firs or trajectories defined in this list

getXData (/bls=False)
Return time+xdata array

Input: - [bls [default=False] return only the time+xdata array or optionally both the
data array and a list of column label

setDist ()
setDist stuff for the determination of distributions

setFiredReactions (fired_reactions)
Set the reactions that fired Input:

84

Chapter 17. PySCeS MDL Parser

StochPy User Guide, Release 1.0.0

*fired_reactions a list of fired reactions

setLabels (species)
Set the species Input:

sspecies a list of species labels

setMeanWaitingtimes (waiting_times)
"

setPropensities (propensities)
Sets an array of propensities.

Input:
* propensities a list of propensities
setPropensitiesLabels (labels)

setSimulationInfo (timesteps, endtime, simulation_trajectory)
setSimulationInfo

setSpecies (species, Ibls=None)
Set the species array Input:

especies an array of species vs time data
*[bls [default=None] a list of species labels

setTime (time, [bl=None)
Set the time vector

Input”
* time a 1d array of time points
* [bl [default=None] is “Time” set as required

setWaitingtimes (waiting_times, Ibls=None)
Set the waiting_times this data structure is not an array but a nested list of: waiting
time log bins per reaction per trajectory:

waiting_times = [traj_1, ..., traj_n] traj_1 = [wt_J1, ..., wt_Jn] # in order of
SSA_REACTIONS wt_J1 = (xval, yval, nbin) xval =[x_1, ..., x_n] yval =[y_1,
..., y_n] nbin =n

Input:
* waiting_times a list of waiting times
* [bls [default=None] a list of matching reaction names

setXData (xdata, Ibls=None)
Sets an array of extra simulation data

Input: - xdata an array of xdata vs time - [bls [default=None] a list of xdata labels

class stochpy.PyscesMiniModel .InterpolatedDataObj

85

StochPy User Guide, Release 1.0.0

class stochpy.PyscesMiniModel .NewCoreBase
Core2 base class, needed here as we use Core2 derived classes in PySCes

get (attr)
Return an attribute whose name is str(attr)

getName ()
setName (name)

class stochpy.PyscesMiniModel .PySCeS_Connector (ModelFile,
ModelDir, Is-
NRM=False)

BuildDependencyGraph ()
Function which builds a dependency graph

BuildReactions ()
Extract information out of each reaction, such as what are the reagents/reactants
and which parameter is used for that particular reaction.

BuildX ()
Builds the initial concentrations of all species (X).

DetermineAffects ()
Determine the affects for each reaction

class stochpy.PyscesMiniModel .PyscesInputFileParser (File, dir, out-
put_dir=None)
This class contains the PySCeS model loading
InitialiseInputFile ()
Parse the input file associated with the PySCeS model instance and assign the basic
model attributes

buildN ()
Generates the stoichiometric matrix N from the parsed model description. Returns
a stoichiometric matrix (N) as a numpy array

PySCeS - Python Simulator for Cellular Systems (http://pysces.sourceforge.net)
Copyright (C) 2004-2009 B.G. Olivier, J.M. Rohwer, J.-H.S Hofmeyr all rights reserved,

Brett G. Olivier (bgoli @users.sourceforge.net) Triple-J Group for Molecular Cell Physiology
Stellenbosch University, South Africa.

Permission to use, modify, and distribute this software is given under the terms of the PySceS
(BSD style) license. See LICENSE.txt that came with this distribution for specifics. pys NO
WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. Brett G. Olivier

86 Chapter 17. PySCeS MDL Parser

http://pysces.sourceforge.net
mailto:bgoli@users.sourceforge.net

CHAPTER
EIGHTEEN

PYSCESINTERFACES

Interfaces converting to and from PySCeS models - makes use of Brett’s Core2

class stochpy.PyscesInterfaces.Core2interfaces
Defines interfaces for translating PySCeS model objects into and from other formats.

convert SBML2PSC (sbmilfile, sbmldir=None, pscfile=None, pscdir=None)
Convert an SBML file to a PySCeS MDL input file.

esbmlfile: the SBML file name

esbmldir: the directory of SBML files (if None current working directory is
assumed)

*pscfile: the output PSC file name (if None sbmlfile.psc is used)
*pscdir: the PSC output directory (if None the stochpy.model_dir is used)

readMod2Core (mod, iValues=True)
Convert a PySCeS model object to core2

*iValues: if True then the models initial values are used (or the current values if
False).

readSBMLToCore (filename, directory=None)
Reads the SBML file specified with filename and converts it into a core2 object
stochpy.interface.core

*filename: the SBML file

edirectory: (optional) the SBML file directory None means try the current work-
ing directory

writeCore2PSC (filename=None, directory=None, getstrbuf=False)
Writes a Core2 object to a PSC file.

*filename: writes <filename>.xml or <model_name>.xml if None
edirectory: (optional) an output directory
egetstrbuf: if True a StringlO buffer is returned instead of writing to disk

writeCore2SBML (filename=None, directory=None, getdocument="False)
Writes Core2 object to an SBML file.

87

StochPy User Guide, Release 1.0.0

*filename: writes <filename>.xml or <model_name>.xml if None
edirectory: (optional) an output directory

egetdocument: if True an SBML document object is returned instead of writing
to disk or

writeMod2PSC (mod, filename=None, directory=None, iValues=True, getstr-

buf=False)
Writes a PySCeS model object to a PSC file.

*filename: writes <filename>.psc or <model_name>.psc if None
edirectory: (optional) an output directory

*iValues: if True then the models initial values are used (or the current values if
False).

egetstrbuf: if True a StringlO buffer is returned instead of writing to disk

writeMod2SBML (mod, filename=None, directory=None, iValues=True, getdoc-

ument=False, getstrbuf=False)
Writes a PySCeS model object to an SBML file.

filename: writes <filename>.xml or <model_name>.xml if None
directory: (optional) an output directory

*iValues: if True then the models initial values are used (or the current values if
False).

egetdocument: if True an SBML document object is returned instead of writing
to disk or

egetstrbuf: if True a StringlO buffer is returned instead of writing to disk

88 Chapter 18. Pysceslinterfaces

CHAPTER
NINETEEN

STOCHASTIC NUCLEOSOME
MODIFICATION SIMULATIONS

Performs nucleosome modification simulations based on stochastic simulation algorithms

(SSA).

Hard coded for one trajectory

Written

by

TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: September 19, 2011

class stochpy.NucleosomeSimulations.NucSim (Method="Direct’,

>>>
>>>
>>>
sim
>>>
>>>
>>>
>>>
>>>
>>>
>>>

sim

sim.
sim.
.PlotGlobalTimeSim ()
sim.
sim.

sim

sim.
sim.
sim.
sim.

File=None,
Mode="steps’, End=1000,
Trajectories=1, IsInterac-

)))) tive=True)
Performs Stochastic Nucleosome Modification Simulations.

= stochpy.NucSim()
DoStochSim ()
Model (File = ’"filename.psc’, dir=

Timesteps (1000)
Endtime (100)

.PlotPattern ()

PlotGlobalDistributions ()
Write2File ()
ShowOverview ()
ShowSpecies ()

DoStochSim ()

Endtime (1)

Input:

* t: endtime*(float)

GetGapMeasure ()

"/.../.../filename

Set the end time of exact realization of the Markov jump process

dir=None,

.psc) >>>

Perform a SSA run and merge the output to global M, U and A modification results

89

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Calculates a ‘gap’ measure, which is the abs. difference between the number of
M and A modifications averaged over a long simulation time. (from Dodd et al.
2007, Theoritical Analysis of Epigenetic Cell Memory by Nucleosome Modifica-
tion’, Cell 129,813-822).

GetGlobalDistributions ()
Determine the distribution patterns of all modification types

GetGlobalModification ()
Determine for each modification (M, U or A) the modification frequency at each
position. So, it gives for example that position i is over time almost always in a
M-modified state.

GetNucleosomeOutput ()
Besides nucleosome results, enzyme quantities can be simulated, which are ignored
in the output analysis. So, E(type)M[i] and M[i] are both from M[i], both the first
one carries an enzyme. Therefore, these results are merged to obtain the output per
nucleosome modification position.

GetStateTimes ()
Each nucleosome in this model can have 3 different modifications (M, U, or A). This
function determines for each nucleosome in the model the distribution of times that
it stays in a particular modification.

MergeModifications ()

There are multiple modifications possible for each nucleosome, which gives a enor-
mous number of “species”. Examples are [A1],[M1], and [U1], while this describes
only nucleosome 1. Further, it is interesting to see the modifcation effects for the
whole model in stead of for single nucleosomes. Therefore, this function ‘merges’
the modifications of each nucleosome to the total number of certain modifications
at each time point. For instance, imagine a 60 Nucleosome model with 3 possibile
modifications (M, U, and A), which contains 180 different ‘species’. This model is
then reduced to the three modification levels (M, U and A) at each timepoint.

Hardcoded for three possible modifications: M, U, and A (/28/07/10/)
Method (method)
Input:
* method: (string)
Select one of the four methods:
* Direct
* FirstReactionMethod
* NextReactionMethod
* TaulLeaping

Model (File, dir=None)
Give the model, which is used to do stochastic simulations on

Input:

90

Chapter 19. Stochastic Nucleosome Modification Simulations

StochPy User Guide, Release 1.0.0

* File = ‘filename.psc’
* dir: [default = None] the directory where File lives”

PlotGlobalDistributions (species=None, linestyle="dotted’, ti-

tle="StochPy Distribution Plot’)
Plot the distributions patterns of all modification types Default: PlotGlobalDistri-

butions() plots distribution for each species

Input:
* species: [default = None] as a list [’'S1°,"S2’]
* linestyle: [default = ‘dotted’] dotted, dashed, and solid
e title: [default = StochPy Distribution Plot]

PlotGlobalTimeSim (species=None, linestyle="dotted’, title="StochPy Time

Simulation Plot’)
Plot the time simulation of the merged output

Default: PlotGlobalTimeSim() plots time simulation for each species
Input:

* species: [default = None] as a list [’'S1°,"S2’]

* linestyle: [default = ‘dotted’] dotted, dashed, and solid

PlotPattern (species=None, linestyle="dotted’, title="StochPy Pattern Plot’)
Plot the average nucleosome modification for each nucleosome position Default:
PlotPattern() plots the pattern (position specific distribution) for each species

Input:
* species: [default = None] as a list [’'S1°,"S2’]
* linestyle: [default = ‘dotted’] dotted, dashed, and solid
e title: [default = ‘StochPy Pattern Plot’]

PlotStateTimes (who)
Plot the state times for a given nucleosome modification.

Input:
* who: a certain modification (M5 or A2 for instance)*

PrintGlobalDistributions ()
Print the distributions patterns of all modification types

PrintGlobalTimeSim ()
Print the time simulation of the merged output

PrintPattern ()
Print the average nucleosome modification for each nucleosome pos.

PrintStateTimes ()
Print the mean and std of the state times for each nucleosome modification.

91

StochPy User Guide, Release 1.0.0

Reload ()
Reload the entire model again. Usefull if the model file has changed

Run ()
old version

ShowOverview ()
Print an overview of the current settings

ShowSpecies ()
Print the species of the model

Timesteps (s)
Set the number of time steps to be generated for each trajectory

Input:
* s: Number of time steps (integer)

Write2File (what="TimeSim’, to=None)
Write output to a file

Input:
e what: [default = TimeSim] TimeSim, GlobalDistributions, Pattern
* to: Directory/outputname (optional)

Default of the first argument is: TimeSim

92 Chapter 19. Stochastic Nucleosome Modification Simulations

CHAPTER
TWENTY

N-NUCLEOSOME MODEL BUILDER

Used as input for Stochastic Simulation Algorithms.

This model builder has several features: - neighbour dependent reactions - neighbour inde-
pendent reactions - initial modifications are randomly determined - enzyme-landing-locations

(23/08/10)

Output is automatically stored in a modelfile at /home/usr/Stochpy/pscmodels/

Written by TR Maarleveld, Amsterdam,
tmd200@users.sourceforge.net Last Change: September 15, 2011

class stochpy.NucleosomeModel .NucModel (N=20,

cay=False)

Netherlands E-mail:

ModelType=1, On-

OffRate=0.1,

DiffRate=0.6, EnzymeR-

Recruit=0.1, Land-

ingZones={‘M’: [10]}, Is-

Recruit=False, IsNeigh-
bours=Fualse, IsLon-
gRange=False, Thresh-

NeighbourRate=2.0,
EnzNeighRate=10.0, IsDe-

Builds reactions for a N-nucleosome model, which can be used as input for SSAs. Input:

*N: number of nucleosomes (integer)
*ModelType: (1-8 or else)

eOnRate: (float) U[i] — EUJi]
*OffRate: (float) EM[i] —> M[i]
*DiffRate: (float) EM[i] —> EM[i+-1]
*EnzymeRate: (float) EU[i] —> EM[i]
*Recruit: (float) M[i] — EM[i]

*LandingZones: dictionairy, where the keys are the enzyme types and the values the

positions

*Booleans: IsRecruit,IsNeighbours,IsLongRange, Threshold,IsDecay

93

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

Each input argument has a default value and it is possible to change them in a interactive
manner.

Usage (high-level functions): >>> help(model) >>> model.Build() The generated
model is stored at /home/user/Stochpy/pscmodels/modell.psc >>> model.ChangeN(15)
The number of nucleosomes is: 15 >>> model.Recruitment() Info: Recruit-
ment is activated >>> model.Neighbours() >>> model.LongRangelnteractions() >>>
model.ChangeThreshold(5) >>> model.Decay()

Build()
Build one of the pre-defined models or a user-defined one

BuildLandingZones (landing_zones)
Builds the landing zones: locations where enzymes can bind to the DNA Input:

*LandingZones: (dictionairy) The keys are the enzyme types and the values the
positions, such as: {‘M’:[10]}

ChangeN (n)
Change the number of nucleosomes Input:

*n: desired number of nucleosomes (integer)

ChangeThreshold (threshold)
Determine the threshold for long range neighbour interactions”

Input:
* threshold: (integer)

Decay (IsDecay=True)
Determine if the long range interactions are at one or multiple locations.

Example: Threshold = 7 U[i] + M[i+7] —> M[i] + M[i+7] k = kneighbour U[i] +
M[i+6] —> M[i] + M[i+6] k = kneighbour * 0.80 U[i] + M[1+8] —> M[i] + M[i+8] k
= kneighbour * 0.80 U[i] + M[i+5] —> M[i] + M[i+5] k = kneighbour * 0.41 U[i] +
M[i+9] —> M[i] + M[i+9] k = kneighbour * 0.41 U[i] + M[i+4] —> M[i] + M[i+4] k
= kneighbour * 0.135 U[i] + M[i+10] —> M[i] + M[i+10] k = kneighbour * 0.135

Input:
* IsDecay (boolean)

EntireModel ()
Uses all the pre-defined functions in this class to build the entire model.

EnzNext (mod, i, x, n=1)
Builds in a multi-nucleosome model the interactions between nucleosomel[i] and
nucleosome[i+x], where enzymes are explicitly simulated. Ofcourse, Nucl[N+5]
does not exist, so it does not create interactions with non-existing nucleosomes.
Input:

*mod: modification type (string)
*i: Nucleosome number (integer)

*x: Nucleosome Neighbour number (integer)

94 Chapter 20. N-nucleosome model builder

StochPy User Guide, Release 1.0.0

*n: [default=1] Decay value (float)

EnzPrevious (mod, i, x, n=1)
Builds in a multi-nucleosome model the interactions between nucleosomel[i] and
nucleosomel[i-x], where enzymes are explicitly simulated. Ofcourse, Nucl[-1] does
not exist, so it does not create interactions with non-existing nucleosomes. Input:

*mod: modification type (string)

*i: Nucleosome number (integer)

*x: Nucleosome Neighbour number (integer)
*n: [default = 1] Decay value (float)

Enzyme (mod, i)
Build the reactions that are katalyzed by enzymes that are attached to the DNA
chain: E(type)U[i] —> E(type)M[i] etc Input:

*mod: modification enzyme (string)
*i: Nucleosome number (integer)
EnzymeDropping (mod, Type, i)
Build the dropping of enzymes from nucleosomes: E(type)M[i] —> M[i]
* mod: modification (string)
* Type: enzyme type
* i: Nucleosome number (integer)

EnzymeLanding (i, Type, mod)
Enzyme landing 0 —> E[i] Input:

*i: Nucleosome number (integer)
*Type: enzyme type
*mod: modification (string)
EnzymeMovement (Type)
Build the diffusion of enzymes along the DNA-chain: E(type)[i] —>
E(type)[i+1], E(type)[i] — E(type)[i-1] This is done for each modifica-
tion type, so: E(type)M[i] —> E(type)M[i+1] or to E
(type)[A+1] etc.
Input:
* Type: enzyme type
Initials ()

Builds the initial concentrations of the nucleosome modifications. Each nucleosome
starts with a certain modification (M, U or A), which is determined randomly.

95

StochPy User Guide, Release 1.0.0

Kvalues ()
Builds to velocity-constants

LongRangeInteractions (IsLongRange=True)
Activate or deactivate long range neighbour interactions

Input:
* IsLongRange: (boolean)

ModelType (num)
Choose a build-in model (1-8) Input:

enum: (integer) 1-8

Neighbours (IsNeighbours=True)
Activate or deactivate neighbour interactions

Input:
e IsNeighbours (boolean)

Next (Type, i, x, n=1)
Builds in a multi-nucleosome model the interactions between nucleosomel[i] and
nucleosome[i-x] Ofcourse, Nucl[-1] does not exist, so it does not create interactions
with non-existing nucleosomes Input:

*Type: modification enzyme (string)

*i: Nucleosome number (integer)

*x: Nucleosome Neighbour number (integer)
*n: [default = 1] Decay value (float)

Noisyl (i)
Builds the noisy conversions from M —> U and from A —> U for each nucleosome
in the model. Input:

*i: Nucleosome number (integer)

Noisy2 (i)
Builds the noisy conversions from U-> A and U—> M for each nucleosome in the
model. Notice that these conversions are only made if there is no explicit simulation
of the enzymes. Input:

*i: Nucleosome number (int)

Previous (Type, i, x,n=1)
Builds in a multi-nucleosome model the interactions between nucleosomel[i] and
nucleosome[i-x]. Ofcourse, Nucl[-1] does not exist, so it does not create interac-
tions with non-existing nucleosomes. Input:

*Type: modification enzyme (string)
*i: Nucleosome number (integer)

*x: Nucleosome Neighbour number (integer)

96 Chapter 20. N-nucleosome model builder

StochPy User Guide, Release 1.0.0

*n: [default = 1] Decay value (float)

RecruitEnzymes (mod, i)
Build reactions, which can recruit enzymes if a nucleosome carries a certain mod-
ification. M[i] —> EmM][i], if the model simulates M enzymes explicitly A[i] —>
EaA[i], if the model simulates A enzymes explicitly Input:

*mod: modification enzyme (string)
*i: Nucleosome number (int)

Recruitment (IsRecruit=True)
Activate or deactivate recruitment

Input:
e IsRecruit (boolean)

WritelLastReaction ()
Print the last created reaction

WriteParms ()
Write the parameters that are used in the model to a file

Written by TR Maarleveld, Amsterdam, The Netherlands E-mail:
tmd200@users.sourceforge.net Last Change: September 15, 2011

class stochpy.SBML2PSC.SBML2PSC
Module that converts SBML models into PSC models if libxml and libsbml are installed

Usage: >>> converter = stochpy.SBML2PSC() >>> con-
verter. SBML2PSC(‘file.xml’ ,directory)

SBML2PSC (sbmlfile, sbmldir=None, pscfile=None, pscdir=None)
Converts a SBML file to a PySCeS MDL input file.

Input:
» sbmlfile: the SBML file name

* sbmldir: [default = None] the directory of SBML files (if None current
working directory is assumed)

* pscfile: [default = None] the output PSC file name (if None sbmlfile.psc is
used)

e pscdir: [default = None] the PSC output directory (if None the
pysces.model_dir is used)

97

mailto:tmd200@users.sourceforge.net

StochPy User Guide, Release 1.0.0

98 Chapter 20. N-nucleosome model builder

Part VII

Indices and tables

99

StochPy User Guide, Release 1.0.0

* genindex

e search

101

StochPy User Guide, Release 1.0.0

102

stochpy.
.FirstReactionMethod, 66
stochpy.
stochpy.
stochpy.
.NextReactionMethod, 68
.NucleosomeModel, 92

stochpy.

stochpy

stochpy
stochpy

88

stochpy.
stochpy.
stochpy.
stochpy.
stochpy.
stochpy.

PYTHON MODULE INDEX

DirectMethod, 63

modules.Analysis, 73
modules.dnorm, 80
modules.Heap, 77

NucleosomeSimulations,

PyscesInterfaces, 86
PyscesMiniModel, 81
PyscesParse, 86
SBML2PSC, 97
StochSim, 59
TauLeaping, 70

103

	I Introduction
	II Start using StochPy
	III Stochastic Modelling
	Modelling input
	Stochastic versus Deterministic Rate Equations
	Zeroth order
	First order
	Second order
	Third order

	Stochastic Simulation Algorithms
	Algorithms
	Model Selection
	Run a SSA
	Build-in Analysis Techniques
	Example
	Using StochPy as a Library
	Stochastic Test suite

	Nucleosome Modification Simulations
	Nucleosome Model Builder

	IV Installation and Configuration
	Installation
	Windows
	Linux/MAC OS/Cygwin

	Configuration

	V The PySCeS Model Description Language
	Defining a PySCeS model
	A kinetic model
	Model keywords
	Global unit definition
	Symbol names and comments
	Compartment definition
	Function definitions
	Defining fixed species
	Reaction stoichiometry and rate equations
	Species and parameter initialisation

	Advanced model construction
	Assignment rules
	Rate rules
	Events
	Piecewise
	Reagent placeholder

	Example StoMPy input files
	Basic model definition
	Advanced example

	VI StochPy Module documentation
	Stochastic Simulation Module
	Direct Method
	First Reaction Method
	Next Reaction Method
	Optimized Tau-Leaping
	Analysis
	Indexed Priority Queue (IPQ)
	DNORM
	PySCeS MDL Parser
	PyscesInterfaces
	Stochastic Nucleosome Modification Simulations
	N-nucleosome model builder

	VII Indices and tables
	Python Module Index

