fopy Documentation
Release 0.1

Marcell Marosvolgyi

June 27, 2014

1 General description

1.1 Website

2 Module documentation
3 Indices and tables

Python Module Index

CONTENTS

17

fbpy Documentation, Release 0.1

Contents:

CONTENTS 1

fbpy Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

GENERAL DESCRIPTION

The fbpy module is an API for drawing in the framebuffer on Linux machines. It was conceived as part of an audio
player project based on the raspberry pi computer and wolfson pi audio interface. I needed a low-level graphics library
for visualizing audio data (scope, phase,...). I also wanted to gain some programming skills, like writing ¢ libs for
python and some kernel stuff. So this module is by no means an attempt to make a better graphics lib with fancy
hardware acceleration or anythin or making something original. I think it is use able though and by examining the
source, it might serve as a form of documentation if you want to make something like this yourself. That is why I
publish it. Oh, and of course because I support open source hardware and software, the ‘firmware’ of my audio player
should be available as source :)

1.1 Website

http://transistorlove.wordpress.com

http://transistorlove.wordpress.com

fbpy Documentation, Release 0.1

4 Chapter 1. General description

CHAPTER
TWO

MODULE DOCUMENTATION

class fb.Colors
Some prefab colors, to make life easier.

Food for Pixelstyle. e.g.:

class fb.Surface (*args)
This is the main class, it generates a drawing surface.

On first invokation, it will generate a surface which encompasses the entire screen automaticaly and it will open
the framebuffer device. The classmethod close will close it. Subsequent instances will need arguments defining
size and position.

static addpoly (*args, **kwargs)
just a test for the moment

addpoly(<x array>,<y array>)

static arc (<tuple>, <radius 1>, <radius 2>, <start seg>, <end seg>, <no seg>)
couple of examples here:

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> sub = fb.Surface((0,0), (200,200))

>>> sub.clear ()

>>> sub.pixelstyle = fb.Pixelstyles.faint
>>> sub.arc((100,100), 60, 90, 0, 50, 100)
>>> sub.pixelstyle = fb.Pixelstyles.sharp
>>> sub.arc((100,100), 40, 40, 30, 90, 100)

>>> sub.grabsilent ("./source/images/arc.png")

fbpy Documentation, Release 0.1

blit (<filename>)
will put the PNG <filename> in the current surface

>>> import fbpy.fb as fb
>>> main = fb.Surface ()

>>> sub = fb.Surface((100,100), (600,600))

>>> sub.blit ("../examples/cylon.png")

0

>>> sub.grabsilent ("./source/images/gottherobot.png")
0

6 Chapter 2. Module documentation

fbpy Documentation, Release 0.1

static circle (<tuple>, <radius>, <segments>)
Will draw a ...

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> sub = fb.Surface((0,0), (200,200))

>>> sub.clear ()

0

>>> sub.circle((100,100),0.5, 100)

0

>>> sub.grabsilent ("./source/images/circle.png")
0

fbpy Documentation, Release 0.1

clear ()

will make blackscreen

drawpolys ()
Draw a bunch of polygons

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

import fbpy.fb as fb

import numpy as np

main = fb.Surface()
main.clear ()

sub = fb.Surface ((100,100), (200,200))
sub.clear ()

x1l = np.arange(0,1,0.1)

yl = 0.5*np.sin(x1+x2+np.pi)+0.5
X2 = np.arange(0,1,0.1)

y2 = 0.5xnp.cos (x2+x2+np.pi)+0.5
sub.addpoly (x1,vy1l)

sub.addpoly (x2,v2)
sub.drawpolys ()
sub.trafo.rotate(0.1)

sub.drawpolys ()

sub.grabsilent ("./source/images/polys.png")

Chapter 2. Module documentation

fbpy Documentation, Release 0.1

get_raw ()
returns an raw bitmap array of the current window, use set_raw to put the bitmap back.

sprite = main.get_raw()
main.set_raw(sprite)

grab (<filename>)
grabs current frame into file <filename>.png

grabsequence (<filename>)
grabs current frame into file with filename <filename#>

where # is an automatich counter. the output will be e.g.: screenshot0001.png, screenshot0002.png, ...

you can use e.g.

nerd@wonka: ~/tmp$ avconv —-i <filename>%04d.png —-c:v huffyuv <yourmoviename>.avi

to convert the sequence to a movie. You can also use ofcourse somehtin like

nerd@wonka: ~/tmp$ avconv -f fbdev -r 10 -i /dev/fb0 -c:v huffyuv /dev/shm/movi.avi 2> /dev/

grabsilent (<filename>)
grabs current buffer into file <filename>.png

so, if you dont use update, you’ll never actually see the drawing. Handy for doctest stuff of other apps
where you only wanna make pics..

static graticule (<tuple>, <tuple>, <fb.color>, <fb.color>)
draws scope-like graticule @ first tuple of size second tuple (width/height). color = subs, color2 main

returns 0

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> sub2 = fb.Surface((0,0), (200,200))
>>> sub2.clear() == 0

True
>>> sub2.pixelstyle.color = fb.Color(200,200,200,00)

fbpy Documentation, Release 0.1

>>> sub2.fillrect ((0,0), (200,200)) == 0

True

>>> sub2.pixelstyle.color = fb.Colors.white

>>> sub2.graticule((0.0,0.0), (1.0,1.0)) == 0

True

>>> sub2.grabsilent ("./source/images/graticule.png") == 0
True

informdriver ()
pass relevant class info to fbutils driver, this is how one ‘instance’ of the driver can serve multiple Surface
instances

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> main.informdriver ()
0

static 1ine (<tuple crd from>, <tuple crd to>)
or

static poly (<xdata numpy array>, <ydata numpy array>)
x, y will be the points, have to be the same length and type

style =0, 1, 2 0: solid line 1: dashed line 2: dotted line

>>> import fbpy.fb as fb

>>> import numpy as np

>>> x = np.arange (0, 1,0.01)
>>> y = 0.5+np.sin(x*2*2*np.pi) + 0.5
>>> main = fb.Surface()

>>> subwin = fb.Surface ((0,0), (200,200))

10 Chapter 2. Module documentation

fbpy Documentation, Release 0.1

>>> subwin.clear ()
0
>>> subwin.pixelstyle = fb.Pixelstyles.faint

>>> subwin.poly(x, V)
0
>>> subwin.grabsilent ("./source/images/poly.png")

static printxy (<tuple>, <string>, <size>)
Will print text in string at position defined by tuple (X, y).

Size can be 1 or 2, where 2 prints triple sized LCD-like format
returns 0

>>> import fbpy.fb as fb
>>> main = fb.Surface()
>>> sub = fb.Surface((0,0), (800,100))

>>> sub.clear ()

0

>>> sub.printxy ((10,10),"Hello world!"™, 2)

0

>>> sub.printxy((10,38),"or a bit smaller...", 1)
0

>>> sub.pixelstyle.color = fb.Color (20,20,20,100)

>>> sub.pixelstyle.blur = 2

>>> sub.pixelstyle.blurradius = 4

>>> sub.pixelstyle.sigma = 1

>>> sub.printxy ((10,76), "where R them goggles...", 1)
0

>>> sub.grabsilent ("./source/images/printxy.png")
0

11

fbpy Documentation, Release 0.1

or a bit smaller...

static rect (<tuple>, <tuple>, <fb color>, <style>)
Will draw a rectangle @ first tuple, width and height as in second tuple

set_dotstyle (<dotstlyle>, <blur radius>)
dotstyle O : fast plot dotstyle 1 : plot with soft alpha dotstyle 2 : plot with blur + soft alpha

blur radius: well, 2 sigma *2 it is

set_raw (sprite)
puts the bitmap array into the buffer, see get_raw.

snow ()
show some noise...

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> sub = fb.Surface((0,0), (200,200))

>>> sub.clear ()

>>> sub.pixelstyle = fb.Pixelstyles.faint
>>> sub.snow ()

>>> sub.grabsilent ("./source/images/snow.png")

something ()

>>> print "Hello from a doctest.."
Hello from a doctest..

12 Chapter 2. Module documentation

fbpy Documentation, Release 0.1

update ()
draws the buffered geometries. So, you need this before you actualy see anything

class fb.Trafo
Handle two dim lintrafos for your surface.

that is: Stretch and or Rotate

yih.

Work-flow.

You start with making an instance:

T = Trafo()

Uppon instanciation you get an unity transform by default. Then decide what should happen to it.. E.g. you
want to rotate and then stretch it. Well, you’ll define two Operators:

R = Trafo()

S = Trafo()

R.rotate (0.1) #where 0.1 is the angle in RAD
S.stretch(1.05, 1.05) #ehhhr, % in horiz and vert

Now you can iterate:

T %=R
T *=S

Each surface has a built in trafo fb.Surface.trafo, which is unity or identity by default. The state of this operator
is passed to the fb driver.

Here is a full example:

>>> import fbpy.fb as fb

>>> main = fb.Surface()

>>> sub = fb.Surface((100,100), (200,200))
>>> R = fb.Trafo()

>>> R.rotate(0.1)

>>> sub.clear ()

>>> for i1 in range (10):

sub.trafo*=R
sub.rect ((10,10), (190,190))

O O O O O O oo o o -

>>> sub.grabsilent ("./source/images/rotate.png")
0

13

fbpy Documentation, Release 0.1

class fb.Uniton (*args, **kwargs)
The Uniton is a special case of the Vulgion and ensures inheritance of certain properties of the primeordial
instance for all consecutive instances.

14 Chapter 2. Module documentation

CHAPTER
THREE

* genindex
* modindex

INDICES AND TABLES

15

fbpy Documentation, Release 0.1

16 Chapter 3. Indices and tables

fb, 5

PYTHON MODULE INDEX

17

	General description
	Website

	Module documentation
	Indices and tables
	Python Module Index

