8/30/12 Cakewalk DevXchange - Specifications - sfz File Format

sfz File Format

By: Cakewalk, Development
Filed Under: Specifications

The sfz Format: Basics
What is the sfz format?
The sfz format s a file format to define how a collection of samples are arragned for performance.

The goal behind the sfz format is to provide a free, simple, minimalistic and expandable format to arrange, distribute and use audio samples with the highest possible quality and
the highest possible performance flexibility.

A sfz format file can be played in our freeware sfz player.
Soundware, software and hardware developers can create, use and distribute the sfz format files for free, for either free or commercial applications.

Some of the features of the sfz format are:

Samples of any bit depth (8/16/24/32-bit) support, mono or stereo

Samples taken at any samplerate (i.e. 44.1k, 48k, 88.2k, 96k, 176.4k, 192k, 384k)
Compressed samples. Compressed and uncompressed can be combined
Looped samples

Unlimited keyboard splits and layers

Unlimited velocity splits and layers

Unlimited regions of sample playback based on MIDI controllers (continuous controllers, pitch bend, channel and polyphonic aftertouch, keyboard switches) and internal
generators (random, sequence counters)

Sample playback on MIDI control events

Unlimited unidirectional and bidirectional exclusive regions (mute groups)
Unlimited release trigger regions with release trigger attenuation control
Unlimited crossfade controls

Trigger on first-note and legato notes

Sample playback synchronized to host tempo

Dedicated Envelope Generators for pitch, filter and amplifier

Dedicated LFO for pitch, filter and amplifier

* v oYY wowow

rr YT YT wTY ww

How is the sfz format structured?
The sfz format is a collection of sample files plus one or multiple .sfz definition files. This structure, containing multiple files instead of a single file is defined as non-monolithic.

Two kinds of sample files were selected to be included in the sfz format: a basic PCM uncompressed format (standard Windows wave files) and a basic, adjustable-quality, royalty
free compressed format (ogg-vorbis encoded files).

The inclusion of a compressed format allows sample developers and soundware creators to easily create preview or demonstration files in a small package so they can be
transferred with minimum bandwidth, while retaining complete performance functionality.

Both formats are 100% royalty-free, so players can be created to reproduce them without fixed or per-copy fees. They can also be freely distributed on the web (provided that the
contents of the files are copyright cleared).

Each .sfz definition file represents one or a collection of instruments. An instrument is defined as a collection of regions. Regions include the definition for the input controls, the
samples (the wav/ogg files) and the performance parameters to play those samples.

How is the .sfz definition file created?
A .sfz definition file is just a text file. Consequently, it can be created by using any text editor (i.e. Notepad).

Why non-monolithic?

While both monolithic and non-monolithic formats have advantages and disadvantages, there are several reasons which moved us to adopt a non-monolithic sample format.
Technological and conceptual reasons can hardly be separated, so here's a basic explanation.

The most important reason is the file size limitation of a non-monolitic file on FAT32 partitions. Samples are getting really big nowadays, with thousands of individual samples
collected in single instruments, and triggered according to many input control combinations.

Samples with high bit resolution (i.e. 24-bit samples) and high samplerate settings (96kHz, 192kHz) make the collection size even bigger. In the case of a non-monolithic format,
the limitation still applies, but it applies to each sample instead of to the sum of all samples, making the limit virtually unreachable.

While this limitation doesn't apply to NTFS, NTFS partitions are less efficient than FAT32 disks in terms of raw disk performance for streaming applications.

Additionally, editing a single sample in a monolithic file implies loading the whole file, and after edit, saving the whole file again to disk. When collection size is big, the loading
and saving operation is very time-consuming.

However, we have not discharged the possibility of incorporating a monolithic format for the sfz format, as soon as the format structure is completely implemented. Small sound
sets (or NTFS users) could chose between the two options appropriately.

Why not XML?

XML was actually the first choice for the .sfz definition file, mainly due the simplicity from the development point of view as the XML parser and transaction code is already
available.

However, XML was designed to exchange data over the web. Musicians, players, composers, soundware developers and audio technicians generally do not know about XML at
all.

In addition, as a universal information exchange format designed for general-purpose applications, XML is inefficient (in terms of information over total data terms), and editing a
XML file requires the use of a XML editor instead of a text editor.

A sfzfile is extremely self-explanatory. Most of the functionality of an instrument can be easily discovered by reading the file.

Is there a .sfz dedicated editor?

www.cakewalk.com/DevXchange/article.aspx?aid=108 1/18

8/30/12 Cakewalk DevXchange - Specifications - sfz File Format

From rgc:audio, not yet... and not anytime soon.
However, we're working with several developers in the industry, creators of sample-conversion software to implement the .sfz format in their converters and editors.

The nature of the format allows creating instruments using other general-purpose software, like spreadsheets, wordprocessors, simple-scripting languages and other custom
tailored software applications.

Implementation
How is an instrument defined?

The basic component of an instrument is a region. An instrument then, is defined by one or more regions. Multiple regions can be arranged in a group. Groups allow entering
common parameters for multiple regions.

A region can include three main components: the definition for a sample, a set of input controls and a set of performance parameters.
Sample

The sample opcode defines which sample file will be played when the region is defined to play.
If a sample opcode is not present in the region, the region will play the sample defined in the last <group>. If there's no previous group defined, or if the previous group doesn't
specify a sample opcode, the region will be ignored.

Input Controls
Input controls define when the sample defined in a region will play, based in real-world controller values and/or internally calculated values.

Real-world controllers are the elements that players, musicians or composers actually use to play music. Internal values are calculated by the player, like sequence counters and
random generators.

The sfz format relies in the standard Musical Instruments Digital Interface (MIDI) specification for all input controls. Most available performance controllers implement MIDI, and it's
still the dominating specification for software audio sequencers in all platforms.

Keyboard controllers are the most significant example of an Input Controls generator. Other generators could be MIDI guitars and string instruments, wind controllers, drum and
percussion controllers. With individual differences, they all generate a common set of messages defined in the MIDI specification.

A set of input controls then, are the combination of a played MIDI note with its velocity, continuous controllers, pitch bend, channel and polyphonic aftertouch, etc.

When a particular set of input controls matches the definition for a region, the sample specified in that region plays, using a particular set of performance parameters also
specified in the region.

Inside the definition file, a region starts with the <region> header. A region is defined between two <region> headers, or between a <region> header and a <group> header, or
between a <region> header and the end of the file.

Following the <region> header one or more opcodes can be defined. The opcodes are special keywords which instruct the player on what, when and how to play a sample.

Opcodes within a region can appear in any order, and they have to be separated by one or more spaces or tabulation controls. Opcodes can appear in separated lines within a
region.

Opcodes and assigned opcode values are separated by the equal to sign (=), without spaces between the opcode and the sign. For instance:

sample=trombone_a4_ff.wav
sample=cello_a5_pp first take.wav

are valid examples, while:
sample = cello_a4_pp.wav

Is not (note the spaces at the sides of the = sign).
Input Controls and Performance Parameters opcodes are optional, so they might not be presentin the definition file. An 'expectable’ default value for each parameter is pre-
defined, and will be used if there's no definition.

Example region definitions:

<region> sample=440.wav

This region definition instructs the player to play the sample file '440.wav' for the whole keyboard range.
<region> lokey=64 hikey=67 sample=440.wav

This region features a very basic set of input parameters (lokey and hikey, which represent the low and high MIDI notes in the keyboard), and the sample definition.
This instructs the player to play the sample '440.waV', if a key in the 64-67 range is played.

Itis very important to note that all Input Controls defined in a region act using the AND boolean operator. Consequently, all conditions must be matched for the region to play. For
instance:

<region> lokey=64 hikey=67 lovel=0 hivel=34 locc1=0 hicc1=40 sample=440.wav

This region definition instructs the player to play the sample '440.waV' if there is an incoming note eventin the 64-67 range AND the note has a velocity in the 0~34 range AND
last modulation wheel (cc1) message was in the 0~40 range.

Performance parameters

The Performance Parameters define how the sample specified will play, once the region is defined to play.
A simple example of a Performance Parameter is volume. It defines how loud the sample will be played when the region plays.

Groups

As previously stated, groups allow entering common parameters for multiple regions. A group is defined with the <group> opcode, and the parameters enumerated on it last till
the next group opcode, or till the end of the file.

<group>
ampeg_attack=0.04 ampeg_release=0.45

www.cakewalk.com/DevXchange/article.aspx?aid=108 2/18

8/30/12 Cakewalk DevXchange - Specifications - sfz File Format

<region> sample=trumpet_pp_c4.wav key=c4
<region> sample=trumpet_pp_c#4.wav key=c#4
<region> sample=trumpet_pp_d4.wav key=d4
<region> sample=trumpet_pp_d#4.wav key=d#4

<group>
<region> sample=trumpet_pp_e4.wav key=e4 // previous group parameters reset

Comments

Comment lines can be inserted anywhere inside the file. A comment line starts with the slash character ('/'), and it extends till the end of the line.
<region>

sample=trumpet_pp_c4.wav

/I middle C in the keyboard

lokey=60

/I pianissimo layer
lovel=0 hivel=20 // another comment

Where do the sample files have to be stored?

Sample files can be stored either in the same folder where the .sfz definition file resides, or in any alternative route, specified relatively to the location of the definition file.
Consequently:

sample=trumpet_pp_c3.wav
sample=samples\trumpet_pp_c3.wav
sample=..\trumpet_pp_c3.wav

Are all valid sample names.

Alternatively, the player might specify one or several 'user folders', where it will search for samples if it doesn't find them in the same folder as the definition file.

What can the sfz format do?

The sfz format is aimed to allow the arrange of a sample collection in a flexible and expandable way. It's up to the player to decide which functionality it wants to implement.
Units

All units in the sfz format are in real-world values. Frequencies are expressed in Hertz, pitches in cents, amplitudes in percentage and volumes in decibels.
Notes are expressed in MIDI Note Numbers, or in note names according to the International Pitch Notation (IPN) convention. According to this rules, middle C in the keyboard is
C4 and the MIDI note number 60.

Opcode List

The following is a description of all valid opcodes for the sfz format version 1.0:

Opcode ” Description H Type ” Default H Range
Sample Definition
This opcode defines which sample file the region will play.
The value of this opcode is the filename of the sample file, including the
extension. The filename must be stored in the same folder where the definition
file is, or specified relatively to it.
If the sample file is not found, the player will ignore the whole region contents.
Long names and names with blank spaces and other special characters
(excepting the = character) are allowed in the sample definition. i
sample (ﬁlz:gr%e) n/a n/a
The sample will play unchanged when a note equal to the pitch_keycenter
opcode value is played. If pitch_keycenter is not defined for the region, sample
will play unchanged on note 60 (middle C).
Examples:
sample=guitar_c4_ffwav
sample=dog kick.ogg
sample=out of tune trombone (redundant).wav
sample=staccatto_snare.ogg
Input Controls
If incoming notes have a MIDI channel between lochan and hichan, the region
will play.
lochan integer lochan=1 11016
hichan) 9 hichan=16
Examples:
lochan=1 hichan=5
If a note equal to or higher than lokey AND equal to or lower than hikey is
played, the region will play.
lokey and hikey can be entered in either MIDI note numbers (0 to 127) or in MIDI
note names (C-1 to G9)
lokey . .
hikey The key opcode sets lokey, hikey and pitch_keycenter to the same note. integer lokey=0, hikey=127 C()_;ot;2G79
key
Examples:
lokey=60 // middle C
hikey=63 // middle D#
lokey=c4 // middle C

www.cakewalk.com/DevXchange/article.aspx?aid=108 3/18

8/30/12 Cakewalk DevXchange - Specifications - sfz File Format
hikey=d#4 // middle D#
hikey=eb4 // middle Eb (D#)
locc=0, hicc=127
lovel If a note with velocity value equal to or higher than lovel AND equal to or lower than integer Oto 127
hivel hivel is played, the region will play. 9 P
or all controllers
Defines the range of the last Pitch Bend message required for the region to play.
Examples:
lobend lobend=0 hibend=4000 ' lobend=-8192,
hibend integer hibend=8192 -8192 10 8192
The region will play only if last Pitch Bend message received was in the 0~4000
range.
Defines the range of last Channel Aftertouch message required for the region to
play.
lochanaft Examples: . lochanaft=0,
hichanaft lochanaft=30 hichanaft=100 integer hichanaft=127 0to 127
The region will play only if last Channel Aftertouch message received was in the
30~100 range.
Defines the range of last Polyphonic Aftertouch message required for the region
to play.
The incoming note information in the Polyphonic Aftertouch message is not
| vaft relevant. | vaft=0
opolya integer opolyatt=1, 0to 127
hipolyaft Examples: hipolyaft=127
lopolyaft=30 hipolyaft=100
The region will play only if last Polyphonic Aftertouch message received was in
the 30~100 range.
Random values. The player will generate a new random number on every note-
on event, in the range 0~1.
lorand The region will play if the random number is equal to or higher than lorand, and lorand = 0
I than hirand. i i -
hirand ower than hiran floating point hirand = 1 Oto1
Examples:
lorand=0.2 hirand=0.4
lorand=0.4 hirand=1
Host tempo value. The region will play if the host tempo is equal to or higher than
lobpm, and lower than hibpm.
I:Igzm Examples: floating point h:gzﬁwm:f}go 0 to 500 bpm
lobpm=0 hibpm=100
lobpm=100 hibpm=200.5
Sequence length. The player will keep an internal counter creating a consecutive
note-on sequence for each region, starting at 1 and resetting at seq_length.
seq_length integer 1 110 100
Examples:
seq_length=3
Sequence position. The region will play if the internal sequence counter is equal
to seq_position.
seq_position Examples: integer 1 110 100
seq_length=4 seq_position=2
In above example, the region will play on the second note every four notes.
Defines the range of the keyboard to be used as trigger selectors for the sw_last
opcode.
sw_lokey sw_lokey and sw_hikey can be entered in either MIDI note numbers (0 to 127) integer sw_lokey=0, 0to 127
sw_hikey or in MIDI note names (C-1 to G9) 9 sw_hikey=127 C-110 G9
Examples:
sw_lokey=48 sw_hikey=53
Enables the region to play if the last key pressed in the range specified by
sw_lokey and sw_hikey is equal to the sw_last value.
sw_last can be entered in either MIDI note numbers (0 to 127) or in MIDI note . 0to 127
sw last i~ 4 AAn infeaer 4] = _

www.cakewalk.com/DevXchange/article.aspx?aid=108

4/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

names (L-1 10 BY)

Examples:
sw_last=49

C-1to G9

sw_down

Enables the region to play if the key equal to sw_down value is depressed.
Key has to be in the range specified by sw_lokey and sw_hikey.

sw_down can be entered in either MIDI note numbers (0 to 127) or in MIDI note
names (C-1 to G9)

Examples:
sw_down=Cb3

integer

0to 127
C-1to G9

sw_up

Enables the region to play if the key equal to sw_up value is not depressed.
Key has to be in the range specified by sw_lokey and sw_hikey.

sw_up can be entered in either MIDI note numbers (0 to 127) or in MIDI note
names (C-1 to G9)

Examples:
sw_up=49

integer

0to 127
C-1to G9

Sw_previous

Previous note value. The region will play if last note-on message was equal to
sw_previous value.

sw_previous can be entered in either MIDI note numbers (0 to 127) or in MIDI
note names (C-1 to G9)

Examples:
sw_previous=60

integer

none

0to 127
C-1to G9

sw_vel

This opcode allows overriding the velocity for the region with the velocity of the
previous note. Values can be:

current: Region uses the velocity of current note.
previous: Region uses the velocity of the previous note.

Examples:
sw_vel=previous

text

current

current, previous

trigger

Sets the trigger which will be used for the sample to play. Values can be:

attack (default): Region will play on note-on.
release: Region will play on note-off. The velocity used to play the note-off

sample is the velocity value of the corresponding (previous) note-on message.
first: Region will play on note-on, but if there's no other note going on (staccato,
orfirst note in a legato phrase).

legato: Region will play on note-on, but only if there's a note going on (notes after
first note in a legato phrase).

Examples:
trigger=release

integer

attack

attack,
release, first,
legato

group

Exclusive group number for this region.

Examples:
group=3
group=334

integer

0to4Gb
(4294967296)

off_by

Region off group. When a new region with a group number equal to off_by plays,
this region will be turned off.

Examples:
off_by=3
off_by=334

integer

0to 4Gb
(4294967296)

off_mode

Region off mode. This opcode will determinate how a region is turned off by an
off_by opcode. Values can be:

fast (default): The voice will be turned offimmediately. Release settings will not
have any effect.

normal: The region will be setinto release stage. All envelope generators will
enter in release stage, and region will expire when the amplifier envelope
generator expired.

Examples:

off_mode=fast
AH maAAdA—AAraa~ 1

www.cakewalk.com/DevXchange/article.aspx?aid=108

text

fast

fast, normal

5/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

UlI_nuue=niviiiai

on_loccN
on_hiccN

Sample trigger on MIDI continuous control N. If a MIDI control message with a
value between on_loccN and on_hiccN is received, the region will play.

Examples:
on_locc1=0 on_hicc1=0

Region will play when a MIDI CC1 (modulation wheel) message with zero value
is received.

integer

-1 (unassigned)

0to 127

Performance Parameters

Sample Player

delay

Region delay time, in seconds.
If a delay value is specified, the region playback will be postponed for the
specified time.

If the region receives a note-off message before delay time, the region won't play.

All envelope generators delay stage will start counting after region delay time.

Examples:
delay=1
delay=0.2

floating point

0 to 100 seconds

delay_random

Region random delay time, in seconds.

If the region receives a note-off message before delay time, the region won't play.

Examples:
delay_random=1
delay_random=0.2

floating point

0 to 100 seconds

delay_ccN

Region delay time after MIDI continuous controller N messages are received, in
seconds.

If the region receives a note-off message before delay time, the region won't play.

Examples:
delay_cc1=1
delay_cc2=5

floating point

0 to 100 seconds

offset

The offset used to play the sample, in sample units.

The player will reproduce samples starting with the very first sample in the file,
unless offset is specified. It will start playing the file at the offset sample in this
case.

Examples:
offset=3000
offset=32425

integer

0to4 Gb
(4294967296)

offset_random

Random offset added to the region offset, in sample units.

Examples:
offset_random=300
offset_random=100

integer

0to4 Gb
(4294967296)

offset_ccN

The offset used to play the sample according to last position of MIDI continuous
controller N, in sample units.

This opcode is useful to specify an alternate sample start point based on MIDI
controllers.

Examples:
offset_cc1=3000
offset_cc64=1388

integer

0to4 Gb
(4294967296)

end

The endpoint of the sample, in sample units.
The player will reproduce the whole sample if end is not specified.

If end value is -1, the sample will not play. Marking a region end with -1 can be
used to use a silent region to turn off other regions by using the group and off_by
opcodes.

Examples:
end=133000
end=4432425

integer

1104 Gb
(4294967296)

count

The number of times the sample will be played. If this opcode is specified, the
sample will restart as many times as defined. Envelope generators will not be
retriggered on sample restart.

When this opcode is defined, loopmode is automatically set to one_shot.

Examples:

www.cakewalk.com/DevXchange/article.aspx?aid=108

integer

0to4 Gb
(4294967296)

6/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format
count=3
count=2
If loop_mode is not specified, each sample will play according to its predefined
loop mode. That s, the player will play the sample looped using the first defined
loop, if available. If no loops are defined, the wave will play unlooped.
The loop_mode opcode allows playing samples with loops defined in the
unlooped mode. The possible values are:
no_loop: no looping will be performed. Sample will play straight from start to end, no loop for samples
or until note off, whatever reaches first. without :Ioo degned
one_shot: sample will play from start to end, ignoring note off. op ’
loop_mode)) . . X text loop_continuous for n/a
This mode is engaged automatically if the count opcode is defined. samples with defined
loop_continuous: once the player reaches sample loop point, the loop will play p loop(s)
until note expiration. pS)-
loop_sustain: the player will play the loop while the note is held, by keeping it
depressed or by using the sustain pedal (CC64). The rest of the sample will play
after note release.
Examples:
loop_mode=no_loop
loop_mode=loop_continuous
The loop start point, in samples.
If loop_start is not specified and the sample has a loop defined, the sample start
point will be used.
If loop_start is specified, it will overwrite the loop start point defined in the
loop_start sample. integer 0 (4209?9‘(‘5;321796)
This opcode will not have any effect if loopmode is set to no_loop.
Examples:
loop_start=4503
loop_start=12445
The loop end point, in samples. This opcode will not have any effect if loopmode
is set to no_loop.
If loop_end is not specified and the sample have a loop defined, the sample loop
end point will be used.
. 0to4 Gb
loop_end) integer 0 (4294967296)
If loop_end is specified, it will overwrite the loop end point defined in the sample.
Examples:
loop_end=34503
loop_end=212445
Region playing synchronization to host position.
When sync_beats is specified and after input controls instruct the region to play, the
playback will be postponed until the next multiple of the specified value is crossed.
Examples:
sync_beats sync_Fl;eats=4 floating point 0 0 to 32 beats
In this example, if note is pressed in beat 2 of current track, note won't be played until
beat 4 reaches.
This opcode will only work in hosts featuring song position information (vstTimelnfo
ppgPos).
Region playing synchronization to host position offset.
When sync_beats is specified and after input controls instruct the region to play, the
playback will be postponed until the next multiple of the specified value plus the
sync_offset value is crossed.
Examples: . .
sync_offset sync_beats=4 sync_offset=1 floating point 0 0 to 32 beats
In this example, if note is pressed in beat 2 of current track, note won't be played until
beat 5 reaches.
This opcode will only work in hosts featuring song position information (vstTimelnfo
ppqPos).
Pitch
The transposition value for this region which will be applied to the sample.
transpose Examples: integer 0 -127to 127
transpose=3
transpose=-4
The fine tuning for the sample, in cents. Range is A+1 semitone, from -100 to 100.
Only negative values must be prefixed with sign.
tune Examples: integer 0 -100 to 100
tune=33
tune=-30
tina=0A

www.cakewalk.com/DevXchange/article.aspx?aid=108

7/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

| e

pitch_keycenter

Root key for the sample.

Examples:
pitch_keycenter=56
pitch_keycenter=c#2

integer

60 (C4)

-127 to 127
C-1to G9

pitch_keytrack

Within the region, this value defines how much the pitch changes with every note.
Default value is 100, which means pitch will change one hundred cents (one
semitone) per played note.

Setting this value to zero means that all notes in the region will play the same pitch,
particularly useful when mapping drum sounds.

Examples:
pitch_keytrack=20
pitch_keytrack=0

integer

100

-1200 to 1200

pitch_veltrack

Pitch velocity tracking, represents how much the pitch changes with incoming note
velocity, in cents.

Examples:
pitch_veltrack=0

pitch_veltrack=1200

integer

-9600 to 9600
cents

pitch_random

Random tuning for the region, in cents. Random pitch will be centered, with positive
and negative values.

Examples:
pitch_random=100
pitch_random=400

integer

0 to 9600 cents

bend_up

Pitch bend range when Bend Wheel or Joystick is moved up, in cents.

Examples:
bend_up=1200
bend_up=100

integer

200

-9600 to 9600

bend_down

Pitch bend range when Bend Wheel or Joystick is moved down, in cents.

Examples:
bend_down=1200
bend_down=100

integer

-200

bend_step

Pitch bend step, in cents.

Examples:
bend_step=100 // glissando in semitones
bend_step=200 // glissando in whole tones

integer

1to0 1200

Pitch EG

pitcheg_delay

Pitch EG delay time, in seconds. This is the time elapsed from note on to the start of
the Attack stage.

Examples:
pitcheg_delay=1.5
pitcheg_delay=0

floating point

0 seconds

0 to 100 seconds

pitcheg_start

Pitch EG start level, in percentage.

Examples:
pitcheg_start=20
pitcheg_start=100

floating point

0%

0to 100 %

pitcheg_attack

Pitch EG attack time, in seconds.

Examples:
pitcheg_attack=1.2
pitcheg_attack=0.1

floating point

0 seconds

0 to 100 seconds

pitcheg_hold

Pitch EG hold time, in seconds. During the hold stage, EG output will remain at its
maximum value.

Examples:
pitcheg_hold=1.5
pitcheg_hold=0.1

floating point

0 seconds

0 to 100 seconds

pitcheg_decay

Pitch EG decay time, in seconds.

Examples:
pitcheg_decay=1.5
pitcheg_decay=3

floating point

0 seconds

0 to 100 seconds

pitcheg_sustain

Pitch EG release time (after note release), in seconds.

Examples:
pitcheg_release=1.34
pitcheg_release=2

floating point

100 %

0to 100 %

pitcheg_release

Pitch EG release time (after note release), in seconds.

Examples:
pitcheg_release=1.34
pitcheg_release=2

floating point

0 seconds

0 to 100 seconds

Depth for the pitch EG, in cents.

www.cakewalk.com/DevXchange/article.aspx?aid=108

8/18

8/30/12

pitcheg_depth

Cakewalk DevXchange - Specifications - sfz File Format

Examples:
pitcheg_depth=1200
pitcheg_depth=-100

integer

-12000 to 12000

pitcheg_vel2delay

Velocity effect on pitch EG delay time, in seconds.
Examples:

pitcheg_vel2delay=1.2

pitcheg_vel2delay=0.1

Delay time will be calculated as

delay time = pitcheg_delay + pitcheg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

pitcheg_vel2attack

Velocity effect on pitch EG attack time, in seconds.
Examples:

pitcheg_vel2attack=1.2

pitcheg_vel2attack=0.1

Attack time will be calculated as

attack time = pitcheg_attack + pitcheg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100
seconds

pitcheg_vel2hold

Velocity effect on pitch EG hold time, in seconds.
Examples:

pitcheg_vel2hold=1.2

pitcheg_vel2hold=0.1

Hold time will be calculated as

hold time = pitcheg_hold + pitcheg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100
seconds

pitcheg_vel2decay

Velocity effect on pitch EG decay time, in seconds.
Examples:

pitcheg_vel2decay=1.2

pitcheg_vel2decay=0.1

Decay time will be calculated as

decay time = pitcheg_decay + pitcheg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

pitcheg_vel2sustain

Velocity effect on pitch EG sustain level, in percentage.
Examples:

pitcheg_vel2sustain=30

pitcheg_vel2sustain=20

Sustain level will be calculated as

sustain level = pitcheg_sustain + pitcheg_vel2sustain

floating point

0%

-100 % to 100 %

pitcheg_vel2release

Velocity effect on pitch EG release time, in seconds.
Examples:

pitcheg_vel2release=1.2

pitcheg_vel2release=0.1

Release time will be calculated as

release time = pitcheg_release + pitcheg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100
seconds

pitcheg_vel2depth

Velocity effect on pitch EG depth, in cents.

Examples:
pitcheg_vel2depth=100
pitcheg_vel2depth=-1200

integer

0 cents

-12000 to 12000
cents

Pitch LFO

pitchifo_delay

The time before the Pitch LFO starts oscillating, in seconds.

Examples:
pitchlfo_delay=1
pitchlfo_delay=0.4

floating point

0 seconds

0 to 100 seconds

pitchifo_fade

Pitch LFO fade-in effect time.

Examples:
pitchlfo_fade=1
pitchlfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

pitchifo_freq

Pitch LFO frequency, in hertz.

Examples:
pitchlfo_freq=0.4
pitchlfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

pitchifo_depth

Pitch LFO depth, in cents.

Examples:
pitchlfo_depth=1
pitchlfo_depth=4

integer

0 cent

-1200 to 1200
cents

nitchlfn dantheeN

Pitch LFO depth when MIDI continuous controller N is received, in cents.

Fyamnlac*

www.cakewalk.com/DevXchange/article.aspx?aid=108

intanar

N rent

-1200 to 1200

9/18

8/30/12 Cakewalk DevXchange - Specifications - sfz File Format
T | pitehifo_depthoo1=100 o
pitchlfo_depthcc32=400

cents

Pitch LFO depth when channel aftertouch MIDI messages are received, in cents.

-1200 to 1200

pitchifo_depthchanaft || Examples: integer 0 cent cents

pitchlfo_depthchanaft=100
pitchlfo_depthchanaft=400

Pitch LFO depth when polyphonic aftertouch MIDI messages are received, in cents.

-1200 to 1200

pitchifo_depthpolyaft || Examples: integer 0 cent cents

pitchlfo_depthpolyaft=100
pitchlfo_depthpolyaft=400

Pitch LFO frequency change when MIDI continuous controller N is received, in hertz.

pitchlfo_freqccN gi’::‘r:‘l‘fg'e;:eqcc s floating point 0 hertz -200 to 200 hertz

pitchlfo_freqcc1=-12

Pitch LFO frequency change when channel aftertouch MIDI messages are received,
in hertz.

pitchifo_freqchanaft floating point 0 hertz -200 to 200 hertz

Examples:
pitchlfo_freqchanaft=10
pitchlfo_freqchanaft=-40

Pitch LFO frequency change when polyphonic aftertouch MIDI messages are
received, in hertz.

pitchifo_freqgpolyaft floating point 0 hertz -200 to 200 hertz

Examples:
pitchlfo_fregpolyaft=10
pitchlfo_freqpolyaft=-4

Filter

Filter type. Avaliable types are:

Ipf_1p: one-pole low pass filter (6dB/octave).
hpf_1p: one-pole high pass filter (6dB/octave).
Ipf_2p: two-pole low pass filter (12dB/octave).
hpf_2p: two-pole high pass filter (12dB/octave).
bpf_2p: two-pole band pass filter (12dB/octave).
brf_2p: two-pole band rejection filter (12dB/octave).

Ipf_1p, hpf_1p,
text Ipf_2p Ipf_2p, hpf_2p,
bpf_2p, brf_2p

fil_type

Examples:
fil_type=Ipf_2p
fil_type=hpf_1p

The filter cutoff frequency, in Hertz.

If the cutoff is not specified, the filter will be disabled, with the consequent CPU

drop in the player.
cutoff floating point filter disabled Samp?etlgate /2

Examples:
cutoff=343
cutoff=4333

The variation in the cutoff frequency when MIDI continuous controller N is received,
in cents.
-9600 to 9600

cutoff_ccN
cents

Examples: integer 0

cutoff_cc1=1200
cutoff_cc2=-100

The variation in the cutoff frequency when MIDI channel aftertouch messages are
received, in cents.
-9600 to 9600

cutoff_chanaft
cents

Examples: integer 0

cutoff_chanaft=1200
cutoff_chanaft=-100

The variation in the cutoff frequency when MIDI polyphonic aftertouch messages are
received, in cents.
-9600 to 9600

cutoff_polyaft cents

Examples: integer 0

cutoff_polyaft=1200
cutoff_polyaft=-100

The filter cutoff resonance value, in decibels.

resonance Examples: floating point 0dB 0to40dB
resonance=30

Filter keyboard tracking (change on cutoff for each key) in cents.

fil_keytrack Examples: integer 0 cents 0to 1200 cents
fil_keytrack=100
fil_keytrack=0

Center key for filter keyboard tracking. In this key, the filter keyboard tracking will
have no effect.

fil_keycenter integer 60 0to 127

Examples:

fil kevrantar=AN

www.cakewalk.com/DevXchange/article.aspx?aid=108 10/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

Ny

ﬁI:keycente r=48

fil_veltrack

Filter velocity tracking, represents how much the cutoff changes with incoming note
velocity.

Examples:
fil_veltrack=0
fil_veltrack=1200

integer

-9600 to 9600
cents

fil_random

Random cutoff added to the region, in cents.

Examples:
fil_random=100
fil_random=400

integer

0 to 9600 cents

Filter EG

fileg_delay

Filter EG delay time, in seconds. This is the time elapsed from note on to the start of
the Attack stage.

Examples:
fileg_delay=1.5
fileg_delay=0

floating point

0 seconds

0 to 100 seconds

fileg_start

Filter EG start level, in percentage.

Examples:
fileg_start=20
fileg_start=100

floating point

0%

0to 100 %

fileg_attack

Filter EG attack time, in seconds.

Examples:
fileg_attack=1.2
fileg_attack=0.1

floating point

0 seconds

0 to 100 seconds

fileg_hold

Filter EG hold time, in seconds. During the hold stage, EG output will remain atits
maximum value.

Examples:
fileg_hold=1.5
fileg_hold=0.1

floating point

0 seconds

0 to 100 seconds

fileg_decay

Filter EG decay time, in seconds.

Examples:
fileg_decay=1.5
fileg_decay=3

floating point

0 seconds

0 to 100 seconds

fileg_sustain

Filter EG sustain level, in percentage.

Examples:
fileg_sustain=40.34
fileg_sustain=10

floating point

100 %

0to 100 %

fileg_release

Filter EG release time (after note release), in seconds.

Examples:
fileg_release=1.34
fileg_release=2

floating point

0 seconds

0 to 100 seconds

fileg_depth

Depth for the filter EG, in cents.

Examples:
fileg_depth=1200
fileg_depth=-100

integer

-12000 to 12000

fileg_vel2delay

Velocity effect on filter EG delay time, in seconds.
Examples:

fileg_vel2delay=1.2

fileg_vel2delay=0.1

Delay time will be calculated as

delay time = fileg_delay + fileg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

fileg_vel2attack

Velocity effect on filter EG attack time, in seconds.
Examples:

fil_vel2attack=1.2

fil_vel2attack=0.1

Attack time will be calculated as

attack time = fileg_attack + fileg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100
seconds

fileg_vel2hold

Velocity effect on filter EG hold time, in seconds.
Examples:

fileg_vel2hold=1.2

fileg_vel2hold=0.1

Hold time will be calculated as

hold time = fileg_hold + fileg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100
seconds

Velocity effect on filter EG decay time, in seconds.

Examples:

www.cakewalk.com/DevXchange/article.aspx?aid=108

11/18

8/30/12

fileg_vel2decay

Cakewalk DevXchange - Specifications - sfz File Format

fileg_vel2decay=1.2
fileg_vel2decay=0.1

Decay time will be calculated as

decay time = fileg_decay + fileg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

fileg_vel2sustain

Velocity effect on filter EG sustain level, in percentage.
Examples:

fileg_vel2sustain=30

fileg_vel2sustain=-30

Sustain level will be calculated as

sustain level = fileg_sustain + fileg_vel2sustain

Result will be clipped to 0~100%.

floating point

0%

-100 % to 100 %

fileg_vel2release

Velocity effect on filter EG release time, in seconds.
Examples:

fileg_vel2release=1.2

fileg_vel2release=0.1

Release time will be calculated as

release time = fileg_release + fileg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100
seconds

fileg_vel2depth

-12000 to 12000 cents

integer

0 cents

-12000 to 12000
cents

Filter LFO

fillfo_delay

The time before the filter LFO starts oscillating, in seconds.

Examples:
fillfo_delay=1
fillfo_delay=0.4

floating point

0 seconds

0 to 100 seconds

filifo_fade

Filter LFO fade-in effect time.

Examples:
fillfo_fade=1
fillfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

filifo_freq

Filter LFO frequency, in hertz.

Examples:
fillfo_freq=0.4
fillfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

fillfo_depth

Filter LFO depth, in cents.

Examples:
fillfo_depth=1
fillfo_depth=4

floating point

0dB

-1200 to 1200
cents

fillfo_depthccN

Filter LFO depth when MIDI continuous controller N is received, in cents.

Examples:
fillfo_depthcc1=100
fillfo_depthcc32=400

integer

0 cent

-1200 to 1200
cents

filifo_depthchanaft

Filter LFO depth when channel aftertouch MIDI messages are received, in cents.

Examples:
fillfo_depthchanaft=100
fillfo_depthchanaft=400

integer

0 cent

-1200 to 1200
cents

filifo_depthpolyaft

Filter LFO depth when polyphonic aftertouch MIDI messages are received, in cents.

Examples:
fillfo_depthpolyaft=100
fillfo_depthpolyaft=400

integer

0 cent

-1200 to 1200
cents

filifo_freqccN

Filter LFO frequency change when MIDI continuous controller N is received, in hertz.

Examples:
fillfo_freqcc1=5
fillfo_freqcc1=-12

floating point

0 hertz

-200 to 200 hertz

fillifo_freqchanaft

Filter LFO frequency change when channel aftertouch MIDI messages are received,
in hertz.

Examples:
fillfo_freqchanaft=10
fillfo_freqchanaft=-40

floating point

0 hertz

-200 to 200 hertz

filifo_freqgpolyaft

Filter LFO frequency change when polyphonic aftertouch MIDI messages are
received, in hertz.

Examples:
fillfo_freqpolyaft=10
fillfo_freqpolyaft=-4

floating point

0 hertz

-200 to 200 hertz

Amplifier

volume

The volume for the region, in decibels.

Examples:
volume=-24

www.cakewalk.com/DevXchange/article.aspx?aid=108

floating point

0.0

-144to 6 dB

12/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

volume=0
volume=3.5

The panoramic position for the region.

If a mono sample is used, pan value defines the position in the stereo image where
the sample will be placed.

When a stereo sample is used, the pan value the relative amplitude of one channel
respect the other.

The amp_velcurve_N opcodes allow overriding the default velocity curve.

Examples:
amp_veltrack=0
amp_veltrack=100

1 i - 0,
pan A value of zero means centered, negative values move the panoramic to the left, floating point 00 100 to 100 %
positive to the right.
Examples:
pan=-30.5
pan=0
pan=43
Only operational for stereo samples, width defines the amount of channel mixing
applied to play the sample.
A width value of 0 makes a stereo sample play as if it were mono (adding both
channels and compensating for the resulting volume change). A value of 100 will
make the stereo sample play as original.
) Any value in between will mix left and right channels with a part of the other, . .
width resulting in a narrower stereo field image. floating point 0.0 -100 to 100 %
Negative width values will reverse left and right channels.
Examples:
width=100 // stereo
width=0 // play this stereo sample as mono
width=50 // mix 50% of one channel with the other
Only operational for stereo samples, position defines the position in the stereo
field of a stereo signal, after channel mixing as defined in the width opcode.
A value of zero means centered, negative values move the panoramic to the left,
positive to the right.
position floating point 0.0 100 t0 100 %
Examples:
/I mix both channels and play the result at left
width=0 position=-100
/I make the stereo image narrower and play it
/1 slightly right
width=50 position=30
Amplifier keyboard tracking (change in amplitude per key) in dB.
amp_keytrack Examples: floating point 0dB -96to 12dB
amp_keytrack=-1.4
amp_keytrack=3
Center key for amplifier keyboard tracking. In this key, the amplifier keyboard tracking
will have no effect.
amp_keycenter Examples: integer 60 0to 127
amp_keycenter=60
amp_keycenter=48
Amplifier velocity tracking, represents how much the amplitude changes with
incoming note velocity.
Volume changes with incoming velocity in a concave shape according to the
following expression:
amp_veltrack Amplitude(dB) = 20 log (12772 / Velocity*2) floating point 100 % -100 to 100 %

amp_velcurve_1
amp_velcurve_127

User-defined amplifier velocity curve. This opcode range allows defining a
specific curve for the amplifier velocity. The value of the opcode indicates the
normalized amplitude (0 to 1) for the specified velocity.

The player will interpolate lineraly between specified opcodes for unspecified
ones:

amp_velcurve_1=0.2 amp_velcurve_3=0.3
/I amp_velcurve_2 is calculated to 0.25

If amp_velcurve_127 is not specified, the player will assign it the value of 1.

Examples:

/llinear, compressed dynamic range
/I amplitude changes from 0.5 to 1
amp_velcurve_1=0.5

www.cakewalk.com/DevXchange/article.aspx?aid=108

floating point

standard curve (see
amp_veltrack)

Oto1

13/18

8/30/12
|

Cakewalk DevXchange - Specifications - sfz File Format

Random volume for the region, in decibels.

amp_random Examples: floating point 0 0to24dB
amp_random=10
amp_random=3
The volume decay amount when the region is set to play in release trigger mode, in
decibels per second since note-on message.
rt_decay floating point 0dB 0to 200 dB
Examples:
rt_decay=6.5
The stereo output number for this region.
If the player doesn't feature multiple outputs, this opcode is ignored.
output e | integer 0 0to 1024
Xxamples:
output=0
output=4
Gain applied on MIDI control N, in decibels.
gain_ccN Examples: floating point 0 -144t0 48 dB
gain_cc1=12
Fade in control.
xfin_lokey and xfin_hikey define the fade-in keyboard zone for the region.
xfin_lokey The volume of the region will be zero for keys lower than or equal to xfin_lokey, . xfin_lokey=0 0to 127
xfin:hikey and [naxi_mum (as defined by the volume opcode) for keys greater than or equal integer xﬁn:hikey=0 C-11to G9
to xfin_hikey.
Examples:
xfin_lokey=c3 xfin_hikey=c4
Fade out control.
xfout_lokey and xfout_hikey define the fade-out keyboard zone for the region.
xfout_lokey The volume of the region will be maximum (as defined by the volume opcode) for . xfout_lokey=127 0to 127
xfout:hikey :(eyi Io:vir_lihan or equal to xfout_lokey, and zero for keys greater than or equal integer xfout:hikey=127 C-11to G9
o xfout_hikey.
Examples:
xfout_lokey=c5 xfout_hikey=c6
Keyboard crossfade curve for the region. Values can be:
gain: Linear gain crossfade. This setting is best when crossfading phase-aligned
material. Linear gain crossfades keep constant amplitude during the crossfade, .
xf_keycurve preventing clipping. text power gain, power
power: Equal-power RMS crossfade. This setting works better to mix very
different material, as a constant power level is kept during the crossfade.
Fade in control.
xfin_lovel and xfin_hivel define the fade-in velocity range for the region.
xfin lovel The volume of the region will be zero for velocities lower than or equal to) xfin lovel=0
xfin_hivel xfin_lovel, and maximum (as defined by the volume opcode) for velocities integer xfin_hivel=0 0to 127
- greater than or equal to xfin_hivel. -
Examples:
xfin_lovel=0 xfin_hivel=127
Fade out control.
xfout_lokey and xfout_hikey define the fade-out velocity range for the region.
xfout_lovel The volume of the region will be maximum (as defined by the volume opcode) for) xfout_lokey=127
xfout_hivel velocities lower than or equal to xfout_lovel, and zero for velocities greater than integer xfout_hikey=127 0to 127
or equal to xfout_hivel.
Examples:
xfout_lovel=0 xfout_hivel=127
Velocity crossfade curve for the region. Values can be:
gain: Linear gain crossfade. This setting is best when crossfading phase-aligned
material. Linear gain crossfades keep constant amplitude during the crossfade, .
xf_velcurve text power gain, power

preventing clipping.

power: Equal-power RMS crossfade. This setting works better to mix very
different material, as a constant power level is kept during the crossfade.

www.cakewalk.com/DevXchange/article.aspx?aid=108

14/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

xfin_loccN
xfin_hiccN

Fade in control.

xfin_loccN and xfin_hiccN set the range of values in the MIDI continuous
controller N which will perform a fade-in in the region.

The volume of the region will be zero for values of the MIDI continuous controller
N lower than or equal to xfin_loccN, and maximum (as defined by the volume
opcode) for values greater than or equal to xfin_hiccN.

Examples:
xfin_locc1=64 xfin_hicc1=127

integer

0to 127

xfout_loccN
xfout_hiccN

Fade out control.

xfout_loccN and xfout_hiccN set the range of values in the MIDI continuous
controller N which will perform a fade-out in the region.

The volume of the region will be maximum (as defined by the volume opcode) for
values of the MIDI continuous controller N lower than or equal to xfout_loccN,
and zero for values greater than or equal to xfout_hiccN.

Examples:
xfout_locc1=64 xfout_hicc1=127

integer

0to 127

xf_cccurve

MIDI controllers crossfade curve for the region. Values can be:

gain: Linear gain crossfade. This setting is best when crossfading phase-aligned
material. Linear gain crossfades keep constant amplitude during the crossfade,
preventing clipping.

power: Equal-power RMS crossfade. This setting works better to mix very
different material, as a constant power level is kept during the crossfade.

text

power

gain, power

Amplifier EG

ampeg_delay

Amplifier EG delay time, in seconds. This is the time elapsed from note on to the start
of the Attack stage.

Examples:

ampeg_delay=1.5
ampeg_delay=0

floating point

0 seconds

0 to 100 seconds

ampeg_start

Amplifier EG start level, in percentage.

Examples:
ampeg_start=20
ampeg_start=100

floating point

0%

0to 100 %

ampeg_attack

Amplifier EG attack time, in seconds.

Examples:
ampeg_attack=1.2
ampeg_attack=0.1

floating point

0 seconds

0 to 100 seconds

ampeg_hold

Amplifier EG hold time, in seconds. During the hold stage, EG output will remain at its
maximum value.

Examples:
ampeg_hold=1.5
ampeg_hold=0.1

floating point

0 seconds

0 to 100 seconds

ampeg_decay

Amplifier EG decay time, in seconds.

Examples:
ampeg_decay=1.5
ampeg_decay=3

floating point

0 seconds

0 to 100 seconds

ampeg_sustain

Amplifier EG sustain level, in percentage.

Examples:
ampeg_sustain=40.34
ampeg_sustain=10

floating point

100 %

0to 100 %

ampeg_release

Amplifier EG release time (after note release), in seconds.

Examples:
ampeg_release=1.34
ampeg_release=2

floating point

0 seconds

0 to 100 seconds

ampeg_vel2delay

Velocity effect on amplifier EG delay time, in seconds.
Examples:

ampeg_vel2delay=1.2

ampeg_vel2delay=0.1

Delay time will be calculated as

delay time = ampeg_delay + ampeg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

Velocity effect on amplifier EG attack time, in seconds.

www.cakewalk.com/DevXchange/article.aspx?aid=108

15/18

8/30/12

ampeg_vel2attack

Cakewalk DevXchange - Specifications - sfz File Format

Exampies:
ampeg_vel2attack=1.2
ampeg_vel2attack=0.1
Attack time will be calculated as

attack time = ampeg_attack + ampeg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100
seconds

ampeg_vel2hold

Velocity effect on amplifier EG hold time, in seconds.

Examples:

ampeg_vel2hold=1.2
ampeg_vel2hold=0.1

Hold time will be calculated as

hold time = ampeg_hold + ampeg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100
seconds

ampeg_vel2decay

Velocity effect on amplifier EG decay time, in seconds.
Examples:

ampeg_vel2decay=1.2

ampeg_vel2decay=0.1

Decay time will be calculated as

decay time = ampeg_decay + ampeg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100
seconds

ampeg_vel2sustain

Velocity effect on amplifier EG sustain level, in percentage.
Examples:

ampeg_vel2sustain=30

ampeg_vel2sustain=-30

Sustain level will be calculated as

sustain level= ampeg_sustain + ampeg_vel2sustain

The result will be clipped to 0~100%.

floating point

0%

-100 % to 100 %

ampeg_vel2release

Velocity effect on amplifier EG release time, in seconds.
Examples:

ampeg_vel2release=1.2

ampeg_vel2release=0.1

Release time will be calculated as

release time = ampeg_release + ampeg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100
seconds

ampeg_delayccN

Amplifier EG delay time added on MIDI control N, in seconds.

Examples:
ampeg_delaycc20=1.5
ampeg_delaycc1=0

floating point

0 seconds

-100 to 100
seconds

ampeg_startccN

Amplifier EG start level added on MIDI control N, in percentage.

Examples:
ampeg_startcc20=20
ampeg_startcc1=100

floating point

0%

-100 to 100 %

ampeg_attackccN

Amplifier EG attack time added on MIDI control N, in seconds.

Examples:
ampeg_attackcc20=1.2
ampeg_attackcc1=0.1

floating point

0 seconds

-100 to 100
seconds

ampeg_holdccN

Amplifier EG hold time added on MIDI control N, in seconds.

Examples:
ampeg_holdcc20=1.5
ampeg_holdcc1=0.1

floating point

0 seconds

-100 to 100
seconds

ampeg_decayccN

Amplifier EG decay time added on MIDI control N, in seconds.

Examples:
ampeg_decaycc20=1.5
ampeg_decaycc1=3

floating point

0 seconds

-100 to 100
seconds

ampeg_sustainccN

Amplifier EG sustain level added on MIDI control N, in percentage.

Examples:
ampeg_sustaincc20=40.34
ampeg_sustaincc1=10

floating point

100 %

-100 to 100 %

ampeg_releaseccN

Amplifier EG release time added on MIDI control N, in seconds.

Examples:
ampeg_releasecc20=1.34
ampeg_releasecc1=2

floating point

0 seconds

-100 to 100
seconds

Amplifier LFO

amplfo delay

The time before the Amplifier LFO starts oscillating, in seconds.

Examples:

www.cakewalk.com/DevXchange/article.aspx?aid=108

floatina point

0 seconds

0 to 100 seconds

16/18

8/30/12

Cakewalk DevXchange - Specifications - sfz File Format

amplfo_delay=1
amplfo_delay=0.4

amplfo_fade

Amplifier LFO fade-in effect time.

Examples:
amplfo_fade=1
amplfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

amplfo_freq

Amplifier LFO frequency, in hertz.

Examples:
amplfo_freq=0.4
amplfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

amplfo_depth

Amplifier LFO depth, in decibels.

Examples:
amplfo_depth=1
amplfo_depth=4

floating point

-10t0o 10dB

amplfo_depthccN

Amplifier LFO depth when MIDI continuous controller N is received, in decibels.

Examples:
amplfo_depthcc1=100
amplfo_depthcc32=400

floating point

0dB

-10to 10dB

amplfo_depthchanaft

Amplifier LFO depth when channel aftertouch MIDI messages are received, in cents.

Examples:
amplfo_depthchanaft=100
amplfo_depthchanaft=400

floating point

-10to 10 dB

amplfo_depthpolyaft

Amplifier LFO depth when polyphonic aftertouch MIDI messages are received, in
cents.

Examples:
amplfo_depthpolyaft=100
amplfo_depthpolyaft=400

floating point

0dB

-10t0o 10dB

amplfo_freqccN

Amplifier LFO frequency change when MIDI continuous controller N is received, in
hertz.

Examples:
amplfo_freqcc1=5
amplfo_freqcc1=-12

floating point

0 hertz

-200 to 200 hertz

amplfo_freqchanaft

Amplifier LFO frequency change when channel aftertouch MIDI messages are
received, in hertz.

Examples:
amplfo_freqchanaft=10
amplfo_freqchanaft=-40

floating point

0 hertz

-200 to 200 hertz

amplfo_fregpolyaft

Amplifier LFO frequency change when polyphonic aftertouch MIDI messages are
received, in hertz.

Examples:
amplfo_freqpolyaft=10
amplfo_freqpolyaft=-4

floating point

0 hertz

-200 to 200 hertz

Equalizer

eql_freq
eq2_freq
eq3_freq

Frequency of the equalizer band, in Hertz.

Examples:
eq1_freq=80 eq2_freq=1000 eq3_freq=4500

floating point

eq1_freq=50
eq2_freq=500
eq3_freq=5000

0 to 30000 Hz

eq1_freqccN

Frequency change of the equalizer band when MIDI continuous control N
messages are received, in Hertz.

www.cakewalk.com/DevXchange/article.aspx?aid=108

eq2_freqccN floating point 0 _30000'_:2 30000
eq3_freqccN Examples:
eq1_freqcc1=80
Frequency change of the equalizer band with MIDI velocity, in Hertz.
eal_vel2freq -30000 to 30000
eq2_vel2freq Examples: floating point 0 Hz
eq3_vel2freq eq1_vel2freq=1000
Bandwidth of the equalizer band, in octaves.
eq1_bw
eq2_bw E les: floating point 1 octave 0.001 to 4 octaves
eq3_bw xamples:
- eq1_bw=1eq2_bw=04 eq3_bw=1.4
Bandwidth change of the equalizer band when MIDI continuous control N messages
eq1_bwccN are received, in octaves.
eq2_bwccN floating point 0 -4 to 4 octaves
eq3_bwccN Examples:
eq1_bwcc29=1.3
. Gain of the equalizer band, in decibels.
eql_gain
zqg_g::: Examples: floating point 0dB -96 to 24 dB
a°_9 eq1_gain=-3 eq2_gain=6 eq3_gain=-6
Gain change of the equalizer band when MIDI continuous control N messages are
eq1_gainccN received, in decibels.
an? aaineeN flnatina nnint ndr _0R th 24 AR

17/18

8/30/12 Cakewalk DevXchange - Specifications - sfz File Format

g

eq3_gaincc! Examples:
eq1_gaincc23=-12

notuy pue

eq1_vel2gain

Gain change of the equalizer band with MIDI velocity, in decibels.

eq2_vel2gain Examples: floating point 0 -96 to 24 dB
eq3_vel2gain eq1_vel2gain=12
Effects
Level of effect1 send, in percentage (reverb in sfz).
T H 0,
effect1 Examples: floating point 0 0to 100 %
effect1=100
Level of effect2 send, in percentage (chorus in sfz).
i i [y
effect2 Examples: floating point 0 0to 100 %
effect2=100
Examples

Example .sfz definition files showing every opcode functionality can be found here.

Version: 1.02, Last updated on:10/1/2010

Copyright © 2012 Cakewalk, Inc. All rights reserved

www.cakewalk.com/DevXchange/article.aspx?aid=108

18/18

