
A simple implementation of traits for Python
Author: Michele Simionato

Date: 2015-08-16

Version: 0.5.3

Download: http://pypi.python.org/pypi/strait

Licence: BSD

Abstract
I provide a simple implementation of traits as units of composable behavior for Python. I argue that traits
are better than multiple inheritance. Implementing frameworks based on traits is left as an exercise for the
reader.

Motivation
Multiple inheritance is a hotly debated topic. The supporters of multiple inheritance claim that it makes
code shorter and easier to read, whereas the opposers claim that is makes code more coupled and more
difficult to understand. I have spent some time in the past facing the intricacies of multiple inheritance in
Python and I was one of its supporters once; however, since then I have worked with frameworks making
large use of multiple inheritance (I mean Zope 2) and nowadays I am in the number of the people who
oppose it. Therefore I am interested in alternatives.

In recent years, the approach of traits has gained some traction in a few circles and I have decided to
write a library to implement traits in Python, for experimentation purposes. The library is meant for
framework builders, people who are thinking about writing a framework based on multiple inheritance -
typically via the common mixin approach - but are not convinced that this is the best solution and would
like to try an alternative. This library is also for authors of mixin-bases frameworks which are unsatisfied
and would like to convert their framework to traits.

Are traits a better solution than multiple inheritance and mixins? In theory I think so, otherwise I would not
have written this library, but in practice (as always) things may be different. It may well be that using traits
or using mixins does not make a big difference in practice and that the change of paradigm is not worth
the effort; or the opposite may be true. The only way to know is to try, to build software based on traits and
to see how it scale in the large. In the small, more or less any approach works fine: it is only by
programming in the large that you can see the differences.

This is the reason why I am releasing this library with a liberal licence, so that people can try it out and see
how it works. The library is meant to play well (when possible) with pre-existing frameworks. As an
example, I will show here how you could rewrite Tkinter classes to use traits instead of mixins. Of course, I
am not advocating rewriting Tkinter: it would be silly and pointless; but it may have sense (or not) to
rewrite your own framework using traits, perhaps a framework which is used in house but has not been
released yet.

I am not the only one to have implemented traits for Python; after finishing my implementation I made a
little research and discovered a few implementations. Then I have also discovered the Enthought Traits
framework, which however seems to use the name to intend something completely different (i.e. a sort of
type checking). My implementation has no dependencies, is short and I am committed to keep it short
even in the future, according to the principle of less is more.

There is also an hidden agenda behind this module: to popularize some advanced features of the Python
object model which are little known. The strait module is actually a tribute to the metaprogramming
capabilities of Python: such features are usually associated to languages with a strong academic tradition
- Smalltalk, Scheme, Lisp - but actually the Python object model is no less powerful. For instance,
changing the object system from a multiple inheritance one to a trait-based one, can be done within the
fundamental object system. The reason is that the features that Guido used to implement the object

http://pypi.python.org/pypi/strait
file:///tmp/MRO
file:///tmp/MRO
http://www.iam.unibe.ch/~scg/Research/Traits/
https://svn.enthought.com/enthought/wiki/Traits
http://www.artima.com/weblogs/viewpost.jsp?thread=236286

system (special method hooks, descriptors, metaclasses) are there, available to the end user to build her
own object system.

Such features are usually little used in the Python community, for many good reasons: most people feel
that the object system is good enough and that there is no reason to change it; moreover there is a strong
opposition to change the language, because Python programmers believe in uniformity and in using
common idioms; finally, it is difficult for an application programmer to find a domain where these features
are useful. An exception is the domain of the Object Relation Mappers, whereas the Python language is
often stretched to mimic the SQL language, a famous example of this tendency being SQLAlchemy). Still,
I have never seen a perversion of the object model as big as the one implemented in the strait
module, so I wanted to be the first one to perform that kind of abuse ;)

What are traits?
The word traits has many meanings; I will refer to it in the sense of the paper Traits - Composable Units of
Behavior which implements them in Squeak/Smalltalk. The paper appeared in 2003, but most of the ideas
underlying traits have been floating around for at least 30 years. There is also a trait implementation for
PLT Scheme which is somewhat close in spirit (if not in practice) to what I am advocating here. The library
you are reading about is by no means intended as a porting of the Smalltalk library: I am just stealing
some of the ideas from that paper to implement a Pythonic alternative to mixins which, for lack of a better
name, I have decided to call traits. I feel no obligation whatsoever to be consistent with the Smalltalk
library. In doing so, I am following a long tradition, since a lot of languages use the name traits to mean
something completely different from the Smalltalk meaning. For instance the languages Fortress and
Scala use the name trait but with a different meaning (Scala traits are very close to multiple inheritance).
For me a trait is a bunch of methods and attributes with the following properties:

1. the methods/attributes in a trait belong logically together;

2. if a trait enhances a class, then all subclasses are enhanced too;

3. if a trait has methods in common with the class, then the methods defined in the class have the
precedence;

4. the trait order is not important, i.e. enhancing a class first with trait T1 and then with trait T2 or
viceversa is the same;

5. if traits T1 and T2 have names in common, enhancing a class both with T1 and T2 raises an error;

6. if a trait has methods in common with the base class, then the trait methods have the precedence;

7. a class can be seen both as a composition of traits and as an homogeneous entity.

Properties from 4 to 7 are the distinguishing properties of traits with respect to multiple inheritance and
mixins. In particular, because of 4 and 5, all the complications with the Method Resolution Order
disappear and the overriding is never implicit. Property 6 is mostly unusual: typically in Python the base
class has the precedence over mixin classes. Property 7 should be intended in the sense that a trait
implementation must provide introspection facilities to make seemless the transition between classes
viewed as atomic entities and as composed entities.

A hands-on example
Let me begin by showing how you could rewrite a Tkinter class to use traits instead of mixins. Consider
the Tkinter.Widget class, which is derived by the base class BaseWidget and the mixin classes
Tkinter.Grid, Tkinter.Pack and Tkinter.Place: I want to rewrite it by using traits. The strait
module provides a factory function named include that does the job. It is enough to replace the multiple
inheritance syntax:

class Widget(BaseWidget, Grid, Pack, Place):
 pass

http://www.sqlalchemy.org/
http://www.iam.unibe.ch/%7Escg/Archive/Papers/Scha03aTraits.pdf
http://www.iam.unibe.ch/%7Escg/Archive/Papers/Scha03aTraits.pdf
http://www.cs.utah.edu/plt/publications/aplas06-fff.pdf

with the following syntax:

class Widget(BaseWidget):
 __metaclass__ = include(Pack, Place, Grid)

I said that the conversion from mixins to traits was easy: but actually I lied since if you try to execute the
code I just wrote you will get an OverridingError:

>>> from Tkinter import *
>>> class Widget(BaseWidget):
... __metaclass__ = include(Pack, Place, Grid)
Traceback (most recent call last):
 ...
OverridingError: Pack overrides names in Place: {info, config, configure, slaves, forget}

The reason for the error is clear: both Pack and Place provide methods called
{info, config, configure, slaves, forget} and the traits implementation cannot figure out
which ones to use. This is a feature, since it forces you to be explicit. In this case, if we want to be
consistent with multiple inheritance rules, we want the methods coming from the first class (i.e. Pack) to
take precedence. That can be implemented by including directly those methods in the class namespace
and relying on rule 3:

class TOSWidget(BaseWidget):
 __metaclass__ = include(Pack, Place, Grid)
 info = Pack.info.im_func
 config = Pack.config.im_func
 configure = Pack.configure.im_func
 slaves = Pack.slaves.im_func
 forget = Pack.forget.im_func
 propagate = Pack.propagate.im_func

Notice that we had to specify the propagate method too, since it is a common method between Pack
and Grid.

You can check that the TOSWidget class works, for instance by defining a label widget as follows
(remember that TOSWidget inherits its signature from BaseWidget):

>>> label = TOSWidget(master=None, widgetName='label',
... cnf=dict(text="hello"))

You may visualize the widget by calling the .pack method:

>>> label.pack()

This should open a small window with the message "hello" inside it.

A few caveats and warnings
First of all, let me notice that, in spite of apparency, include does not return a metaclass. Insted, it
returns a class factory function with signature name, bases, dic:

>>> print include(Pack, Place, Grid)
<function include_Pack_Place_Grid at 0x...>

This function will create the class by using a suitable metaclass:

>>> type(TOSWidget)
<class 'strait.MetaTOS'>

In simple cases the metaclass will be MetaTOS, the main class of the trait object system, but in general it
can be a different one not inheriting from MetaTOS. The exact rules followed by include to determine
the right class will be discussed later.

Here I want to remark that according to rule 6 traits take the precedence over the base class attributes.
Consider the following example:

>>> class Base(object):
... a = 1

>>> class ATrait(object):
... a = 2

>>> class Class(Base):
... __metaclass__ = include(ATrait)

>>> Class.a
2

In regular multiple inheritance you would do the same by including ATrait before Base, i.e.

>>> type('Class', (ATrait, Base), {}).a
2

You should take care to not mix-up the order, otherwise you will get a different result:

>>> type('Class', (Base, ATrait), {}).a
1

Therefore replacing mixin classes with traits can break your code if you rely on the order. Be careful!

The Trait Object System
The goal of the strait module it to modify the standard Python object model, turning it into a Trait
Object System (TOS for short): TOS classes behave differently from regular classes. In particular TOS
classes do not support multiple inheritance. If you try to multiple inherit from a TOS class and another
class you will get a TypeError:

>>> class M:
... "An empty class"
...
>>> class Widget2(TOSWidget, M):
... pass
...
Traceback (most recent call last):
 ...
TypeError: Multiple inheritance of bases (<class '__main__.TOSWidget'>, <class __main__.M at 0x...>) is forbidden for TOS classes

This behavior is intentional: with this restriction you can simulate an ideal world in which Python did not
support multiple inheritance. Suppose you want to claim that supporting multiple inheritance was a

mistake and that Python would have been better off without it (which is the position I tend to have
nowadays): how can you prove that claim? Simply by writing code that does not use multiple inheritance
and it is clearer and more mantainable that code using multiple inheritance.

I am releasing this trait implementation hoping you will help me to prove (or possibly disprove) the point.
You may see traits as a restricted form of multiple inheritance without name clashes, without the
complications of the method resolution, and with a limited cooperation between methods. Moreover the
present implementation is slightly less dynamic than usual inheritance.

A nice property of inheritance is that if you have a class C inheriting from class M and you change a
method in M at runtime, after C has been created and instantiated, automagically all instances of C gets
the new version of the method, which is pretty useful for debugging purposes. This feature is lost in the
trait implementation provided here. Actually, in a previous version, my trait implementation was fully
dynamic and if you changed the mixin the instances would be changed too. However, I never used that
feature in practice, and it was complicating the implementation and slowing doing the attribute access, so I
removed it.

I think these are acceptable restrictions since they give back in return many advantages in terms of
simplicity: for instance, super becomes trivial, since each class has a single superclass, whereas we all
know that the current super in Python is very far from trivial.

The magic of include
Since the fundamental properties of TOS classes must be preserved under inheritance (i.e. the son of a
TOS class must be a TOS class) the implementation necessarily requires metaclasses. As of now, the
only fundamental property of a TOS class is that multiple inheritance is forbidden, so usually (but not
always) TOS classes are instances of the metaclass MetaTOS which implements a single inheritance
check. If you build your TOS hierarchy starting from pre-existing classes, you should be aware of how
include determines the metaclass: if your base class was an old-style class or a plain new style class
(i.e. a direct instance of the type metaclass), them include will change it to MetaTOS:

>>> type(TOSWidget)
<class 'strait.MetaTOS'>

In general you may need to build your Trait Based Framework on top of pre-existing classes possessing a
nontrivial metaclass, for instance Zope classes; in that case include is smart enough to figure out the
right metaclass to use. Here is an example:

class AddGreetings(type):
 "A metaclass adding a 'greetings' attribute for exemplification purposes"
 def __new__(mcl, name, bases, dic):
 dic['greetings'] = 'hello!'
 return super(AddGreetings, mcl).__new__(mcl, name, bases, dic)

class WidgetWithGreetings(BaseWidget, object):
 __metaclass__ = AddGreetings

class PackWidget(WidgetWithGreetings):
 __metaclass__ = include(Pack)

include automatically generates the right metaclass as a subclass of AddGreetings:

>>> print type(PackWidget).__mro__
(<class 'strait._TOSAddGreetings'>, <class '__main__.AddGreetings'>, <type 'type'>, <type 'object'>)

http://www.artima.com/weblogs/viewpost.jsp?thread=236275

Incidentally, since TOS classes are guaranteed to be in a straight hierarchy, include is able to neatly
avoid the dreaded metaclass conflict.

The important point is that _TOSAddGreetings provides the same features of MetaTOS, even if it is not
a subclass of it; on the other hand, _TOSMetaAddGreetings is a subclass of AddGreetings which
calls AddGreetings.__new__, so the features provided by AddGreetings are not lost either; in this
example you may check that the greetings attribute is correctly set:

>>> PackWidget.greetings
'hello!'

The name of the generated metaclass is automatically generated from the name of the base metaclass;
moreover, a register of the generated metaclasses is kept, so that metaclasses are reused if possible. If
you want to understand the details, you are welcome to give a look at the implementation, which is pretty
short and simple, compared to the general recipe to remove the metaclass conflict in a true multiple
inheritance situation.

Cooperative traits
At first sight, the Trait Object System lacks an important feature of multiple inheritance as implemented in
the ordinary Python object system, i.e. cooperative methods. Consider for instance the following classes:

class LogOnInitMI(object):
 def __init__(self, *args, **kw):
 print 'Initializing %s' % self
 super(LogOnInitMI, self).__init__(*args, **kw)

class RegisterOnInitMI(object):
 register = []
 def __init__(self, *args, **kw):
 print 'Registering %s' % self
 self.register.append(self)
 super(RegisterOnInitMI, self).__init__(*args, **kw)

In multiple inheritance LogOnInitMI can be mixed with other classes, giving to the children the ability to
log on initialization; the same is true for RegisterOnInitMI, which gives to its children the ability to
populate a registry of instances. The important feature of the multiple inheritance system is that
LogOnInitMI and RegisterOnInitMI play well together: if you inherits from both of them, you get
both features:

class C_MI(LogOnInitMI, RegisterOnInitMI):
 pass

>>> c = C_MI()
Initializing <__main__.C_MI object at 0x...>
Registering <__main__.C_MI object at 0x...>

You cannot get the same behaviour if you use the trait object system naively:

>>> class C_MI(object):
... __metaclass__ = include(LogOnInitMI, RegisterOnInitMI)
...
Traceback (most recent call last):

http://code.activestate.com/recipes/204197/

 ...
OverridingError: LogOnInitMI overrides names in RegisterOnInitMI: {__init__}

This is a feature, of course, since the trait object system is designed to avoid name clashes. However, the
situation is worse than that: even if you try to mixin a single class you will run into trouble

>>> class C_MI(object):
... __metaclass__ = include(LogOnInitMI)
>>> c = C_MI()
Traceback (most recent call last):
 ...
TypeError: super(type, obj): obj must be an instance or subtype of type

What's happening here? The situation is clear if you notice that the super call is actually a call of kind
super(LogOnInitMI, c) where c is an instance of C, which is not a subclass of LogOnInitMI. That
explains the error message, but does not explain how to solve the issue. It seems that method
cooperation using super is impossible for TOS classes.

Actually this is not the case: single inheritance cooperation is possible and it is enough as we will show in
a minute. But for the moment let me notice that I do not think that cooperative methods are necessarily a
good idea. They are fragile and cause all of your classes to be strictly coupled. My usual advice if that you
should not use a design based on method cooperation if you can avoid it. Having said that, there are
situations (very rare) where you really want method cooperation. The strait module provide support for
those situations via the __super attribute.

Let me explain how it works. When you mix-in a trait T into a class C, include adds an attribute
_T__super to C, which is a super object that dispatches to the attributes of the superclass of C. The
important thing to keep in mind is that there is a well defined superclass, since the trait object system uses
single inheritance only. Since the hierarchy is straight, the cooperation mechanism is much simpler to
understand than in multiple inheritance. Here is an example. First of all, let me rewrite LogOnInit and
RegisterOnInit to use __super instead of super:

class LogOnInit(object):
 def __init__(self, *args, **kw):
 print 'Initializing %s' % self
 self.__super.__init__(*args, **kw)

class RegisterOnInit(object):
 register = []

 def __init__(self, *args, **kw):
 print 'Registering %s' % self
 self.register.append(self)
 self.__super.__init__(*args, **kw)

Now you can include the RegisterOnInit functionality as follows:

class C_Register(object):
 __metaclass__ = include(RegisterOnInit)

>>> _ = C_Register()
Registering <__main__.C_Register object at 0x...>

Everything works because include has added the right attribute:

>>> C_Register._RegisterOnInit__super
<super: <class 'C_Register'>, <C_Register object>>

Moreover, you can also include the LogOnInit functionality:

class C_LogAndRegister(C_Register):
 __metaclass__ = include(LogOnInit)

>>> _ = C_LogAndRegister()
Initializing <__main__.C_LogAndRegister object at 0x...>
Registering <__main__.C_LogAndRegister object at 0x...>

As you see, the cooperation mechanism works just fine. I will call cooperative trait a class intended for
inclusion in other classes and making use of the __super trick. A class using the regular super directly
cannot be used as a cooperative trait, since it must satisfy inheritance constraints, nevertherless it is easy
enough to convert it to use __super. After all, the strait module is intended for framework writers, so
it assumes you can change the source code of your framework if you want. On the other hand, if are trying
to re-use a mixin class coming from a third party framework and using super, you will have to rewrite the
parts of it. That is unfortunate, but I cannot perform miracles.

You may see __super as a clever hack to use super indirectly. Notice that since the hierarchy is
straight, there is room for optimization at the core language level. The __super trick as implemented in
pure Python leverages on the name mangling mechanism, and follows closely the famous autosuper
recipe, with some improvement. Anyway, if you have two traits with the same name, you will run into
trouble. To solve this and to have a nicer syntax, one would need more support from the language, but the
__super trick is good enough for a prototype and has the serious advantage of working right now for
current Python.

Cooperation at the metaclass level
In my experience, the cases where you need method cooperation in multiple inheritance situations are
exceedingly rare, unless you are a language implementor or a designer of very advanced frameworks. In
such a realm you have a need for cooperative methods; it is not a pressing need, in the sense that you
can always live without them, but they are a nice feature to have if you care about elegance and
extensibility. For instance, as P. J. Eby points it out in this thread on python-dev:

A major use case for co-operative super() is in the implementation of metaclasses. The __init__ and
__new__ signatures are fixed, multiple inheritance is possible, and co-operativeness is a must (as the
base class methods must be called). I'm hard-pressed to think of a metaclass constructor or initializer that
I've written in the last half-decade or more where I didn't use super() to make it co-operative. That, IMO, is
a compelling use case even if there were not a single other example of the need for super.

I have always felt the same. So, even if I have been unhappy with multiple inheritance for years, I could
never dismiss it entirely because of the concern for this use case. It is only after discovering cooperative
traits that I felt the approach powerful enough to replace multiple inheritance without losing anything I
cared about.

Multiple inheritance at the metaclass level comes out here and again when you are wearing the language
implementor hat. For instance, if you try to implement an object system based on traits, you will have to do
so at the metaclass level and there method cooperation has its place. In particular, if you look at the
source code of the strait module - which is around 100 lines, a tribute to the power of Python - you will
see that the MetaTOS metaclass is implemented as a cooperative trait, so that it can be mixed-in with
other metaclasses, in the case you are interoperating with a framework with a non-trivial meta object
protocol. This is performed internally by include.

http://www.python.org/download/releases/2.2.3/descrintro/#metaclass_examples
http://www.python.org/download/releases/2.2.3/descrintro/#metaclass_examples
http://www.gossamer-threads.com/lists/python/dev/673833

Metaclass cooperation is there to make the life of the users easier. Suppose one of you, users of the
strait module, wants to enhance the include mechanism using another a metaclass coming for a
third party framework and therefore not inheriting from MetaTOS:

class ThirdPartyMeta(type):
 def __new__(mcl, name, bases, dic):
 print 'Using ThirdPartyMeta to create %s' % name
 return super(ThirdPartyMeta, mcl).__new__(mcl, name, bases, dic)

The way to go is simple. First, you should mix-in MetaTOS in the third party class:

class EnhancedMetaTOS(ThirdPartyMeta):
 __metaclass__ = include(MetaTOS)

Then, you can define your own enhanced include as follows:

def enhanced_include(*traits):
 return include(MetaTOS=EnhancedMetaTOS, *traits)

In simple cases using directly ThirdPartyMeta may work, but I strongly recommend to replace the call
to super with __super even in ThirdPartyMeta to make the cooperation robust.

Discussion of some design decisions and future work
The decision of having TOS classes which are not instances of MetaTOS required some thought. That
was my original idea in version 0.1 of strait; however in version 0.2 I wanted to see what would happen
if I made all TOS classes instances of MetaTOS. That implied that if your original class had a nontrivial
metaclass, then the TOS class had to inherit both from the original metaclass and MetaTOS, i.e. multiple
inheritance and cooperation of methods was required at the metaclass level.

I did not like it, since I was arguing that you can do everything without multiple inheritance; moreover
using multiple inheritance at the metaclass level meant that one had to solve the metaclass conflict in a
general way. I did so, by using my own cookbook recipe, and all my tests passed.

Neverthess, at the end, in version 0.3 I decided to go back to the original design. The metaclass conflict
recipe is too complex, and I see it as a code smell - if the implementation is hard to explain, it's a bad idea
- just another indication that multiple inheritance is bad. In the original design it is possible to add the
features of MetaTOS to the original metaclass by subclassing it with single inheritance and thus avoiding
the conflict.

The price to pay is that now a TOS class is no more an instance of MetaTOS, but this is a non-issue: the
important thing is that TOS classes perform the dispatch on their traits as MetaTOS would dictate.
Moreover, starting from Python 2.6, thanks to Abstract Base Classes, you may satisfy the
isinstance(obj, cls) check even if obj is not an instance of cls, by registering a suitable base
class (similarly for issubclass). In our situation, that means that it is enough to register MetaTOS as
base class of the original metaclass.

Version 0.4 was much more complex that the current version (still short, it was under 300 lines of pure
Python), since it had the more ambitious goal of solving the namespace pollution problem. I have
discussed the issue elsewhere: if you keep injecting methods into a class (both directly or via inheritance)
you may end up having hundreds of methods flattened at the same level.

A picture is worth a thousand words, so have a look at the PloneSite hierarchy if you want to understand
the horror I wanted to avoid with traits (the picture shows the number of nonspecial attributes defined per
class in square brackets): in the Plone Site hierarchy there are 38 classes, 88 overridden names, 42
special names, 648 non-special attributes and methods. It is a nighmare.

http://www.python.org/dev/peps/pep-3119/
http://www.artima.com/weblogs/viewpost.jsp?thread=246341
http://www.phyast.pitt.edu/~micheles/python/plone-hierarchy.png

Originally I wanted to prevent this kind of abuse, but that made my implementation more complex,
whereas my main goal was to keep the implementation simple. As a consequence this version assumes
the prosaic attitude that you cannot stop programmers from bad design anyway, so if they want to go the
Zope way they can.

In previous versions I did provide some syntactic sugar for include so that it was possible to write
something like the following (using a trick discussed here):

class C(Base):
 include(Trait1, Trait2)

In version 0.5 I decided to remove this feature. Now the plumbing (i.e. the __metaclass__ hook) is
exposed to the user, some magic has been removed and it is easier for the user to write her own
include factory if she wants to.

Where to go from here? For the moment, I have no clear idea about the future. The Smalltalk
implementation of traits provides method renaming out of the box. The Python implementation has no
facilities in this sense. In the future I may decide to give some support for renaming, or I may not. At the
present you can just rename your methods by hand. Also, in the future I may decide to add some kind of
adaptation mechanism or I may not: after all the primary goal of this implementation is semplicity and I
don't want to clutter it with too many features.

I am very open to feedback and criticism: I am releasing this module with the hope that it will be used in
real life situations to gather experience with the traits concept. Clearly I am not proposing that Python
should remove multiple inheritance in favor of traits: considerations of backward compatibily would kill the
proposal right from the start. I am just looking for a few adventurous volunteers wanting to experiment with
traits; if the experiment goes well, and people start using (multiple) inheritance less than they do now, I will
be happy.

Trivia
strait officially stands for Simple Trait object system, however the name is also a pun on the world
"straight", since the difference between multiple inheritance hierarchies and TOS hierarchies is that TOS
hierarchies are straight. Moreover, nobody will stop you from thinking that the s also stands for Simionato
;)

http://www.ibm.com/developerworks/linux/library/l-pymeta3.html

	Motivation
	What are traits?
	A hands-on example
	A few caveats and warnings
	The Trait Object System
	The magic of include
	Cooperative traits
	Cooperation at the metaclass level
	Discussion of some design decisions and future work
	Trivia

