
TARDIS Documentation
Release 0.9.dev574

Stuart Sim and Wolfgang Kerzendorf

September 17, 2013

CONTENTS

1 Introduction 3

2 Installation 5

3 Running TARDIS 7

4 Graphical User Interface 9
4.1 GUI Layout and Features . 9

5 Configuration File 11
5.1 Plasma . 11
5.2 Model . 12
5.3 MonteCarlo . 14
5.4 Spectrum . 14
5.5 Config Reader . 15

6 Atomic Data 17
6.1 HDF5 Dataset . 17
6.2 The Atom Data Class . 19
6.3 Indexing fun . 19

7 Plasma 21
7.1 Base Plasma . 21
7.2 Plasma Types . 22
7.3 Sobolev optical depth . 27
7.4 Macro Atom . 27
7.5 NLTE treatment . 29

8 Radiative Monte Carlo 33
8.1 Radiationfield estimators . 33

9 Glossary 35

10 References 37

Bibliography 39

Index 41

i

ii

TARDIS Documentation, Release 0.9.dev574

This is the documentation for the TARDIS package.

CONTENTS 1

TARDIS Documentation, Release 0.9.dev574

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is a package for supernova radiative transfer called Temporal And Radiative Diffusion In Supernovae.

3

TARDIS Documentation, Release 0.9.dev574

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

very easy to install

5

TARDIS Documentation, Release 0.9.dev574

6 Chapter 2. Installation

CHAPTER

THREE

RUNNING TARDIS

To run TARDIS requires two files. The atomic database (for more info refer to Atomic Data) and a configuration file
(more info at Configuration File).

Currently there is no script that can run TARDIS. However it is very easy to set one up:

from tardis import config_reader, model_radial_oned, simulation

tardis_config = config_reader.TARDISConfiguration.from_yaml(’myconfig.yml’)
radial1d_mdl = model_radial_oned.Radial1DModel(tardis_config)
simulation.run_radial1d(radial1d_mdl)

7

TARDIS Documentation, Release 0.9.dev574

8 Chapter 3. Running TARDIS

CHAPTER

FOUR

GRAPHICAL USER INTERFACE

TARDIS uses the PyQt4 framework for its cross-platform interface.

The GUI runs through the IPython Interpreter which should be started with the command ipython-2.7
--pylab=qt, so that it has acess to pylab.

Creating an instance of the ModelViewer-class requires that PyQt4 has already been initialized in IPython. The
above command to start IPython accomplishes this.

4.1 GUI Layout and Features

9

http://www.riverbankcomputing.com/software/pyqt/download
http://ipython.org/install.html

TARDIS Documentation, Release 0.9.dev574

10 Chapter 4. Graphical User Interface

CHAPTER

FIVE

CONFIGURATION FILE

TARDIS uses the YAML markup language for its configuration files. There are several sections which allow different
settings for the different aspects of the TARDIS calculation. An example configuration file can be downloaded here.

Warning: One should note that currently floats in YAML need to be specified in a special format: any pure floats
need to have a +/- after the e e.g. 2e+5

Every configuration file begins with the most basic settings for the model:

#Currently only simple1d is allowed
config_type: simple1d

#luminosity any astropy.unit convertible to erg/s
#special unit log_lsun(log(luminosity) - log(L_sun)
luminosity: 9.44 log_lsun

#time since explosion
time_explosion: 13 day

atom_data: ../atom_data/kurucz_atom_chianti_many.h5

The config_type currently only allows simple1d, but might be expanded in future versions of TARDIS. Many
parameters in the TARDIS configuration files make use of units. One can use any unit that is supported by astropy units
as well as the unit log_lsun which is log(L) − log(L�). Time since explosion just takes a normal time quantity.
atom_data requires the path to the HDF5 file that contains the atomic data (more information about the HDF5 file
can be found here Atomic Data).

5.1 Plasma

The next configuration block describes the plasma parameters:

plasma:
initial_t_inner: 10000 K
initial_t_rad: 10000 K
disable_electron_scattering: no
plasma_type: nebular
#radiative_rates_type - currently supported are lte, nebular and detailed
radiative_rates_type: detailed
#line interaction type - currently supported are scatter, downbranch and macroatom
line_interaction_type : macroatom
w_epsilon : 1.0e-10

11

https://en.wikipedia.org/wiki/YAML
http://docs.astropy.org/en/stable/units/index.html

TARDIS Documentation, Release 0.9.dev574

inital_t_inner is temperature of the black-body on the inner boundary. initial_t_rad is the radiation tem-
perature for all cells. For debugging purposes and to compare to synapps calculations one can disable the electron
scattering. TARDIS will issue a warning that this is not physical. There are currently two plasma_type options
available: nebular and lte which tell TARDIS how to run the ionization equilibrium and level population calcu-
lations (see Plasma for more information). The radiative rates describe how to calculate the Jblue needed for the nlte
calculations and macroatom calculations. There are three options for radiative_rates_type: 1) lte in which
Jblue = Blackbody(Trad), 2) nebular in which Jblue = W × Blackbody(Trad), 3) detailed in which the Jblue are
calculated using an estimator (this is described in ??????).

TARDIS currently supports three different kinds of line interaction: scatter - a resonance scattering implementa-
tion, macroatom - the most complex form of line interaction described in macroatom and downbranch a simplified
version of macroatom in which only downward transitions are allowed.

Finally, w_epsilon describes the dilution factor to use to calculate Jblue that are 0, which causes problem with the
code (so Jblue are set to a very small number).

NLTE:

nlte:
coronal_approximation: True
classical_nebular: False

The NLTE configuration currently allows setting coronal_approximation which sets all Jblue to 0. This is
useful for debugging with chianti for example. Furthermore one can enable ‘classical_nebular’ to set all βSobolev to 1.
Both options are used for checking with other codes and should not be enabled in normal operations.

5.2 Model

The next sections, describing the model, are very hierarchical. The base level is model and contains two subsections:
structure and abundances. Both sections can either contain a file subsection which specifies a file and file
type where the information is stored or a number of other sections.

model:
structure:

no_of_shells : 20

velocity:
type : linear
v_inner : 1.1e4 km/s
v_outer : 2e4 km/s

density:
#showing different configuration options separated by comments
#simple uniform:
#---------------

type : uniform
value : 1e-12 g/cm^3

#---------------

#branch85_w7 - fit of seven order polynomial to W7 (like Branch 85):
#---------------
type : branch85_w7
#value : 1e-12
default, no need to change!
#time_0 : 19.9999584 s
default, no need to change!

12 Chapter 5. Configuration File

TARDIS Documentation, Release 0.9.dev574

#density_coefficient : 3e29
#---------------

file:
type : artis
name : artis_model.dat
v_lowest: 10000.0 km/s
v_highest: 20000.0 km/s

In the structure section, one can specify a file section containing a type parameter (currently only artis
is supported‘‘) and a name parameter giving a path top a file. For the artis type, one can specify the inner and
outermost shell by giving a v_lowest and v_highest parameter. This will result in the selection of certain shells
which will be obeyed in the abundance section as well if artis is selected there as well.

Warning: If a file section is given, all other parameters and sections in the structure section are ignored!

If one doesn’t specify a file section, the code requires two sections (velocities and densities) and a pa-
rameter no_of_shells. no_of_shells is the requested number of shells for a model. The velocity section
requires a type. Currently, only linear is supported and needs two parameters v_inner and v_outer with
velocity values for the inner most and outer most shell.

In the densities section the type parameter again decides on the parameters. The type uniform only needs a
value parameter with a density compatible quantity. The type branch85_w7 uses a seven order poly-
nomial fit to the W7 model and is parametrised by time since explosion. The parameters time_0 and
density_coefficient are set to sensible defaults and should not be changed.

#-- continued from model block before --
abundances:

#file:
type : artis
name : artis_abundances.dat

nlte_species : [Si2]
C: 0.01
O: 0.01
Ne: 0.01
Mg: 0.01
Si: 0.45
S: 0.35
Ar: 0.04
Ca: 0.03
Fe: 0.07
Co: 0.01
Ni: 0.01

The abundance section again has a possible file parameter with type (currently only artis is allowed) and a
name parameter giving a path to a file containing the abundance information.

Warning: In contrast to the structure section, the abundance section will not ignore abundances set in the
rest of the section, but merely will overwrite the abundances given in the file section.

In this section we also specify the species that will be calculated with our nlte formalism using the nlte_species
parameter (they are specified in a list using astrophysical notation, e.g. [Si2, Ca2, Mg2, H1]). The rest of the section
can be used to configure uniform abundances for all shells, by giving the atom name and a relative abundance fraction.
If it does not add up to 1., TARDIS will warn - but normalize the numbers.

5.2. Model 13

TARDIS Documentation, Release 0.9.dev574

5.3 MonteCarlo

The montecarlo section describes the parameters for the MonteCarlo radiation transport and convergence criteria:

montecarlo:
seed: 23111963171620
no_of_packets : 2.e+4
iterations: 100

convergence_criteria:
type: specific
damping_constant: 0.5
threshold: 0.05
fraction: 0.8
hold: 3

convergence_criteria:
type: damped
damping_constant: 0.5
t_inner:
damping_constant: 0.7

The seed parameter seeds the random number generator first for the creation of the packets (ν and µ) and then
the interactions in the actual MonteCarlo process. The no_of_packets parameter can take a float number
for input convenience and gives the number of packets normally used in each MonteCarlo loop. The parameters
last_no_of_packets and no_of_virtual_packets influence the last run of the MonteCarlo loop when
the radiation field should have converged. last_no_of_packets is normally higher than no_of_packets to
create a less noisy output spectrum. no_of_virtual_packets can also be set to greater than 0 to use the Virtual
Packet formalism (reference missing ?????). The iterations parameter describes the maximum number of Mon-
teCarlo loops executed in a simulation before it ends. Convergence criteria can be used to make the simulation stop
sooner when the convergence threshold has been reached.

The convergence_criteria section again has a type keyword. Two types are allowed: damped and
specific. All convergence criteria can be specified separately for the three variables for which convergence can be
checked (t_inner, t_rad, ws) by specifying subsections in the convergence_criteria of the same name.
These override then the defaults.

1. damped only has one parameter damping-constant and does not check for convergence.

2. specific checks for the convergence threshold specified in threshold. For t_rad and w only a given
fraction (specified in fraction) has to cross the threshold. Once a convergence threshold is read,
the simulation needs to hold this state for hold number of iterations.

5.4 Spectrum

The spectrum section defines the

spectrum:
start : 500 angstrom
end : 20000 angstrom
bins : 1000
sn_distance : lum_density
#sn_distance : 10 Mpc

Start and end are given as Quantities with units. If they are given in frequency space they are switched around if
necessary. The number of bins is just an integer. Finally the sn_distance can either be a distance or the special

14 Chapter 5. Configuration File

TARDIS Documentation, Release 0.9.dev574

parameter lum_density which sets the distance to
√

1
4π to calculate the luminosity density.

5.5 Config Reader

The YAML file is read by using a classmethod of the from_yaml().

5.5. Config Reader 15

TARDIS Documentation, Release 0.9.dev574

16 Chapter 5. Configuration File

CHAPTER

SIX

ATOMIC DATA

The atomic data for tardis is stored in hdf5 files. TARDIS ships with a relatively simple atomic dataset which only
contains silicon lines and levels. TARDIS also has a full atomic dataset which contains the complete Kurucz dataset
(http://kurucz.harvard.edu/LINELISTS/GFALL/). This full dataset also contains recombination coefficients from the
ground state (ζ− factor used in Calculating Zeta) and data for calculating the branching or macro atom line interaction
(macroatom).

6.1 HDF5 Dataset

As mentioned previously, all atomic data is stored in hdf5 files which contain tables that include mass, ionization,
levels and lines data. The atom data that ships with TARDIS is located in data/atom

The dataset basic_atom_set contains the Atomic Number, Symbol of the elements and average mass of the
elements.

6.1.1 Basic Atomic Data

Name Description Unit
atomic_number Atomic Number (e.g. He = 2) z
symbol Symbol (e.g. He, Fe, Ca, etc.) None
mass Average mass of atom u

The ionization data is stored in ionization_data.

6.1.2 Ionization Data

Name Description Unit
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
ionization_energy Ionization Energy of atom eV

The levels data is stored in levels_data.

17

http://www.h5py.org/
http://kurucz.harvard.edu/LINELISTS/GFALL/
http://www.h5py.org/

TARDIS Documentation, Release 0.9.dev574

6.1.3 Levels Data

Name Description Unit
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
level_number Level Number 1
energy Energy of a particular level eV
g 1
metastable bool

All lines are stored in lines_data.

6.1.4 Lines Data

Name Description Unit
wavelength Waveslength angstrom
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
f_ul Upper level probability 1
f_lu Lower level probability 1
level_id_lower Upper level id 1
level_id_upper Lower level id 1

The next three datasets are only contained in the full dataset available upon request from the authors.

The factor correcting for photo-ionization from excited levels (needed in Calculating Zeta) is stored in the dataset
zeta_data. The data is stored in a special way as one large numpy.ndarray where the first two columns are
Atomic Number and Ion Number. All further columns are the ζ− factors for different temperatures. The temperatures
are stored in the attribute t_rads.

Name Description Unit
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
T_XXXX Temperature for column K
...
T_XXXX Temperature for column K

There are two datasets for using the macro atom and branching line interactions. The macro_atom_data and
macro_atom_references:

The macro_atom_data contains blocks of transition probabilities, several indices and flags. The Transition Type
flag has three states -1 for downwards emitting, 0 for downwards internal and 1 for upwards internal (for more expla-
nations please refer to macroatom)

6.1.5 Macro Atom Data

Name Description Unit
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
source_level_number Source Level Number 1
destination_level_number Destination Level Number 1
transition_type Transition Type 1
transition_probability Transition Probability 1
transition_line_id Transition Line ID 1

18 Chapter 6. Atomic Data

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

TARDIS Documentation, Release 0.9.dev574

Here’s the structure of the probability block. The atomic number, ion number and source level number are the same
within each block, the destination level number the transition type and transition probability are changing. The tran-
sition probabilities are only part of the final probability and will be changed during the calculation. For details on the
macro atom please refer to macroatom.

Atomic
Number

Ion
Number

Source Level
Number

Destination
Level Number

Transi-
tion
Type

Transition
probabilities

Transition
Line ID

Z1 I1 i1 j1 -1 Pemission down 1 k1

Z1 I1 i1 j2 -1 Pemission down 2 k2

...
Z1 I1 i1 jn -1 Pemission down n kn

Z1 I1 i1 j1 0 Pinternal down 1 k1

Z1 I1 i1 j2 0 Pinternal down 2 k2

...
Z1 I1 i1 jn 0 Pinternal down n kn

Z1 I1 i1 j1 1 Pinternal up 1 k1

Z1 I1 i1 j2 1 Pinternal up 2 k2

...
Z1 I1 i1 jn 1 Pinternal up n kn

The macro_references dataset contains the numbers for each block:

6.1.6 Macro Atom References

Name Description Unit
atomic_number(z) Atomic Number 1
ion_number Ion Number 1
source_level_number Source Level Number 1
count_down Number of down transitions 1
count_up Number of up transitions 1
count_total Total number of transitions 1

6.2 The Atom Data Class

Atom Data is stored inside TARDIS in the AtomData-class. The class method AtomData.from_hdf5() will
instantiate a new AtomData-class from an HDF5 file. If none is given it will automatically take the default HDF5-
dataset shipped with TARDIS. A second function AtomData.prepare_atom_data() will cut the levels and
lines data to only the required atoms and ions. In addition, it will create the intricate system of references needed by
macro atom or branching line interactions.

6.3 Indexing fun

The main problem with the atomic data is indexing. Most of these references require multiple numbers, e.g. atomic
number, ion number and level number. The :py:module:‘pandas‘-framework provides the ideal functions to accom-
plish this. In TARDIS we extensively use pandas.MultiIndex, pandas.Series and pandas.DataFrame

TO BE BETTER DOCUMENTED ...

6.2. The Atom Data Class 19

TARDIS Documentation, Release 0.9.dev574

20 Chapter 6. Atomic Data

CHAPTER

SEVEN

PLASMA

This module calculates the ionization balance and level populations in the BasePlasma, give a abundance fraction,
temperature and density. After calculating the state of the plasma, these classes are able to calculate τsobolev for the
supernova radiative transfer. The simplest BasePlasma (BasePlasma) only calculates the atom number densities,
but serves as a base for all BasePlasma classes. The next more complex class is LTEPlasma which will calculate
the aforementioned quantities in Local Thermal Equilibrium conditions (LTE). The NebularPlasma-class inherits
from LTEPlasma and uses a more complex description of the BasePlasma (for details see nebular_plasma).

Note: In this documentation we use the indices i, j, k to mean atomic number, ion number and level number respec-
tively.

All plasma calculations follow the same basic procedure in calculating the plasma state. This is always accomplished
with the function update_radiationfield. This block diagram shows the basic procedure

7.1 Base Plasma

BasePlasma serves as the base class for all plasmas and can just calculate the atom number densities for a given input
of abundance fraction.

Natom = ρtotal × Abundance fraction/matom

In the next step the line and level tables are purged of entries that are not represented in the abundance fractions are
saved in BasePlasma.levels and BasePlasma.lines. Finally, the function BasePlasma.update_t_rad is called at the end
of initialization to update the plasma conditions to a new Tradiation field (with the give t_rad). This function is the same
in the other plasma classes and does the main part of the calculation. In the case of BasePlasma this is only setting
BasePlasma.beta_rad to 1

kBTrad
.

Here’s an example how to instantiate a simple base plasma:

>>> from tardis import atomic, plasma
>>> atom_data = atomic.AtomData.from_hdf5()
>>> my_plasma = plasma.BasePlasma({’Fe’:0.5, ’Ni’:0.5}, 10000, 1e-13, atom_data)
>>> print my_plasma.abundances
atomic_number abundance_fraction number_density
------------- ------------------ --------------

28 0.5 513016973.936
26 0.5 539183641.472

21

TARDIS Documentation, Release 0.9.dev574

7.2 Plasma Types

7.2.1 LTE Plasma

The LTEPlasma plasma class is the child of BasePlasma but is the first class that actually calculates plasma conditions.
After running exactley through the same steps as BasePlasma, LTEPlasma will start calculating the partition functions.

Zi,j =

max(k)∑
k=0

gk × e−Ek/(kbT)

, where Z is the partition function, g is the degeneracy factor, E the energy of the level and T the temperature of the
radiation field.

The next step is to calculate the ionization balance using the Saha ionization equation. and then calculating the Number
density of the ions (and an electron number density) in a second step. First ge =

(
2πmekBTrad

h2

)3/2
is calculated (in

LTEPlasma.update_t_rad), followed by calculating the ion fractions (LTEPlasma.calculate_saha).

Ni,j+1 ×Ne
Ni,j

= Φi,(j+1)/j

Φi,(j+1)/j = ge ×
Zi,j+1

Zi,j
e−χj→j+1/kBT

In the second step (LTEPlasma.calculate_ionization_balance), we calculate in an iterative process the electron density
and the number density for each ion species.

N(X) = N1 +N2 +N3 + . . .

N(X) = N1 +
N2

N1
N1 +

N3

N2

N2

N1
N1 +

N4

N3

N3

N2

N2

N1
N1 + . . .

N(X) = N1(1 +
N2

N1
+
N3

N2

N2

N1
+
N4

N3

N3

N2

N2

N1
+ . . .)

N(X) = N1 (1 +
Φi,2/1

Ne
+

Φi,2/2

Ne

Φi,2/1

Ne
+

Φi,4/3

Ne

Φi,3/2

Ne

Φi,2/1

Ne
+ . . .)︸ ︷︷ ︸

α

N1 =
N(X)

α

Initially, we set the electron density (Ne) to the sum of all atom number densities. After having calculated the ion
species number densities we recalculated the electron density by weighting the ion species number densities with their
ion number (e.g. neutral ion number densities don’t contribute at all to the electron number density, once ionized
contribute with a factor of 1, twice ionized contribute with a factor of two,).

Finally we calculate the level populations (LTEPlasma.calculate_level_populations), by using the calculated ion
species number densities:

Ni,j,k =
gk
Zi,j
×Ni,j × e−βradEk

This concludes the calculation of the plasma. In the code, the next step is calculating the τSobolev using the quantities
calculated here.

22 Chapter 7. Plasma

http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
http://en.wikipedia.org/wiki/Saha_ionization_equation

TARDIS Documentation, Release 0.9.dev574

Example Calculations

import os
from matplotlib import pyplot as plt
from matplotlib import colors
from tardis import atomic, plasma, util
import numpy as np
import pandas as pd

#Making 2 Figures for ionization balance and level populations

plt.figure(1).clf()
ax1 = plt.figure(1).add_subplot(111)

plt.figure(2).clf()
ax2 = plt.figure(2).add_subplot(111)

expanding the tilde to the users directory
atom_fname = os.path.expanduser(’~/.tardis/si_kurucz.h5’)

reading in the HDF5 File
atom_data = atomic.AtomData.from_hdf5(atom_fname)

#The atom_data needs to be prepared to create indices. The Class needs to know which atomic numbers are needed for the
#calculation and what line interaction is needed (for "downbranch" and "macroatom" the code creates special tables)
atom_data.prepare_atom_data([14], ’scatter’)

#Initializing the NebularPlasma class using the from_abundance class method.
#This classmethod is normally only needed to test individual plasma classes
#Usually the plasma class just gets the number densities from the model class
lte_plasma = plasma.LTEPlasma.from_abundance(10000, {’Si’: 1}, 1e-13, atom_data, 10.)

#Initializing a dataframe to store the ion populations and level populations for the different temperatures
ion_number_densities = pd.DataFrame(index=lte_plasma.ion_populations.index)
level_populations = pd.DataFrame(index=lte_plasma.level_populations.ix[14, 1].index)
t_rads = np.linspace(2000, 20000, 100)

#Calculating the different ion populations and level populuatios for the given temperatures
for t_rad in t_rads:

lte_plasma.update_radiationfield(t_rad, w=1.0)
#getting total si number density
si_number_density = lte_plasma.number_density.get_value(14)
#Normalizing the ion populations
ion_density = lte_plasma.ion_populations / si_number_density
ion_number_densities[t_rad] = ion_density

#normalizing the level_populations for Si II
current_level_population = lte_plasma.level_populations.ix[14, 1] / lte_plasma.ion_populations.ix[14, 1]
#normalizing with statistical weight
current_level_population /= atom_data.levels.ix[14, 1].g

level_populations[t_rad] = current_level_population

ion_colors = [’b’, ’g’, ’r’, ’k’]

for ion_number in [0, 1, 2, 3]:
current_ion_density = ion_number_densities.ix[14, ion_number]

7.2. Plasma Types 23

TARDIS Documentation, Release 0.9.dev574

ax1.plot(current_ion_density.index, current_ion_density.values, ’%s-’ % ion_colors[ion_number],
label=’Si %s W=1.0’ % util.int_to_roman(ion_number + 1).upper())

#only plotting every 5th radiation temperature
t_rad_normalizer = colors.Normalize(vmin=2000, vmax=20000)
t_rad_color_map = plt.cm.ScalarMappable(norm=t_rad_normalizer, cmap=plt.cm.jet)

for t_rad in t_rads[::5]:
ax2.plot(level_populations[t_rad].index, level_populations[t_rad].values, color=t_rad_color_map.to_rgba(t_rad))
ax2.semilogy()

t_rad_color_map.set_array(t_rads)
cb = plt.figure(2).colorbar(t_rad_color_map)

ax1.set_xlabel(’T [K]’)
ax1.set_ylabel(’Number Density Fraction’)
ax1.legend()

ax2.set_xlabel(’Level Number for Si II’)
ax2.set_ylabel(’Number Density Fraction’)
cb.set_label(’T [K]’)

plt.show()

7.2.2 Nebular Plasma

The NebularPlasma class is a more complex description of the Plasma state than the LTEPlasma. It takes a dilution
factor (W) into account, which deals with the dilution of the radiation field due to geometric, line-blocking and other
effects.

The calculations follow the same steps as LTEPlasma, however the calculations are different and often take into
account if a particular level is meta-stable or not. NebularPlasma will start calculating the partition functions.

Zi,j =

max(k)i,j∑
k=0

gk × e−Ek/(kbT)

︸ ︷︷ ︸
metastable levels

+W ×
max(k)i,j∑
k=0

gk × e−Ek/(kbT)

︸ ︷︷ ︸
non-metastable levels

, where Z is the partition function, g is the degeneracy factor, E the energy of the level, T the temperature of the
radiation field and W the dilution factor.

The next step is to calculate the ionization balance using the Saha ionization equation. and then calculating the
Number density of the ions (and an electron number density) in a second step. In the first step, we calculate the
ionization balance using the LTE approximation (Φi,j(LTE)). Then we adjust the ionization balance using two factors
ζ and δ.

Calculating Zeta

ζ is read in for specific temperatures and then interpolated for the target temperature.

Calculating Delta

δ is a radiation field correction factors which is calculated according to Mazzali & Lucy 1993 ([3]; henceforth ML93)

24 Chapter 7. Plasma

http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
http://en.wikipedia.org/wiki/Saha_ionization_equation

TARDIS Documentation, Release 0.9.dev574

In ML93 the radiation field correction factor is denoted as δ and is calculated in Formula 15 & 20

The radiation correction factor changes according to a ionization energy threshold χT and the species ionization thresh-
old (from the ground state) χ0.

For χT ≥ χ0

δ =
Te

b1WTR
exp(

χT

kTR
− χ0

kTe
)

For χT < χ0

δ = 1− exp(
χT

kTR
− χ0

kTR
) +

Te

b1WTR
exp(

χT

kTR
− χ0

kTe
),

where TR is the radiation field Temperature, Te is the electron temperature and W is the dilution factor.

Now we can calculate the ionization balance using equation 14 in [3]:

Φi,j =
Ni,j+1ne
Ni,j

Φi,j = W × [δζ +W (1− ζ)]

(
Te

TR

)1/2

Φi,j(LTE)

In the last step, we calculate the ion number densities according using the methods in LTEPlasma

Finally we calculate the level populations (NebularPlasma.calculate_level_populations()), by using
the calculated ion species number densities:

Ni,j,k(not metastable) = W
gk
Zi,j
×Ni,j × e−βradEk

Ni,j,k(metastable) =
gk
Zi,j
×Ni,j × e−βradEk

This concludes the calculation of the nebular plasma. In the code, the next step is calculating the τSobolev using the
quantities calculated here.

Example Calculations

import os

from matplotlib import colors
from tardis import atomic, plasma, util
from matplotlib import pyplot as plt

import numpy as np
import pandas as pd

#Making 2 Figures for ionization balance and level populations

plt.figure(1).clf()
ax1 = plt.figure(1).add_subplot(111)

plt.figure(2).clf()
ax2 = plt.figure(2).add_subplot(111)

7.2. Plasma Types 25

TARDIS Documentation, Release 0.9.dev574

expanding the tilde to the users directory
atom_fname = os.path.expanduser(’~/.tardis/si_kurucz.h5’)

reading in the HDF5 File
atom_data = atomic.AtomData.from_hdf5(atom_fname)

#The atom_data needs to be prepared to create indices. The Class needs to know which atomic numbers are needed for the
#calculation and what line interaction is needed (for "downbranch" and "macroatom" the code creates special tables)
atom_data.prepare_atom_data([14], ’scatter’)

#Initializing the NebularPlasma class using the from_abundance class method.
#This classmethod is normally only needed to test individual plasma classes
#Usually the plasma class just gets the number densities from the model class
nebular_plasma = plasma.NebularPlasma.from_abundance(10000, 0.5, {’Si’: 1}, 1e-13, atom_data, 10.)

#Initializing a dataframe to store the ion populations and level populations for the different temperatures
ion_number_densities = pd.DataFrame(index=nebular_plasma.ion_populations.index)
level_populations = pd.DataFrame(index=nebular_plasma.level_populations.ix[14, 1].index)
t_rads = np.linspace(2000, 20000, 100)

#Calculating the different ion populations and level populuatios for the given temperatures
for t_rad in t_rads:

nebular_plasma.update_radiationfield(t_rad, w=1.0)
#getting total si number density
si_number_density = nebular_plasma.number_density.get_value(14)
#Normalizing the ion populations
ion_density = nebular_plasma.ion_populations / si_number_density
ion_number_densities[t_rad] = ion_density

#normalizing the level_populations for Si II
current_level_population = nebular_plasma.level_populations.ix[14, 1] / nebular_plasma.ion_populations.ix[14, 1]
#normalizing with statistical weight
current_level_population /= atom_data.levels.ix[14, 1].g

level_populations[t_rad] = current_level_population

ion_colors = [’b’, ’g’, ’r’, ’k’]

for ion_number in [0, 1, 2, 3]:
current_ion_density = ion_number_densities.ix[14, ion_number]
ax1.plot(current_ion_density.index, current_ion_density.values, ’%s-’ % ion_colors[ion_number],

label=’Si %s W=1.0’ % util.int_to_roman(ion_number + 1).upper())

#only plotting every 5th radiation temperature
t_rad_normalizer = colors.Normalize(vmin=2000, vmax=20000)
t_rad_color_map = plt.cm.ScalarMappable(norm=t_rad_normalizer, cmap=plt.cm.jet)

for t_rad in t_rads[::5]:
ax2.plot(level_populations[t_rad].index, level_populations[t_rad].values, color=t_rad_color_map.to_rgba(t_rad))
ax2.semilogy()

#Calculating the different ion populations for the given temperatures with W=0.5
ion_number_densities = pd.DataFrame(index=nebular_plasma.ion_populations.index)
for t_rad in t_rads:

nebular_plasma.update_radiationfield(t_rad, w=0.5)
#getting total si number density

26 Chapter 7. Plasma

TARDIS Documentation, Release 0.9.dev574

si_number_density = nebular_plasma.number_density.get_value(14)
#Normalizing the ion populations
ion_density = nebular_plasma.ion_populations / si_number_density
ion_number_densities[t_rad] = ion_density

#normalizing the level_populations for Si II
current_level_population = nebular_plasma.level_populations.ix[14, 1] / nebular_plasma.ion_populations.ix[14, 1]
#normalizing with statistical weight
current_level_population /= atom_data.levels.ix[14, 1].g

level_populations[t_rad] = current_level_population

#Plotting the ion fractions

for ion_number in [0, 1, 2, 3]:
print "w=0.5"
current_ion_density = ion_number_densities.ix[14, ion_number]
ax1.plot(current_ion_density.index, current_ion_density.values, ’%s--’ % ion_colors[ion_number],

label=’Si %s W=0.5’ % util.int_to_roman(ion_number + 1).upper())

for t_rad in t_rads[::5]:
ax2.plot(level_populations[t_rad].index, level_populations[t_rad].values, color=t_rad_color_map.to_rgba(t_rad),

linestyle=’--’)
ax2.semilogy()

t_rad_color_map.set_array(t_rads)
cb = plt.figure(2).colorbar(t_rad_color_map)

ax1.set_xlabel(’T [K]’)
ax1.set_ylabel(’Number Density Fraction’)
ax1.legend()

ax2.set_xlabel(’Level Number for Si II’)
ax2.set_ylabel(’Number Density Fraction’)
cb.set_label(’T [K]’)

plt.show()

7.3 Sobolev optical depth

This function calculates the Sobolev optical depth τSobolev

CSobolev =
πe2

mec

τSobolev = CSobolev λ flower→upper texplosion Nlower(1−
glower

gupper

Nupper

Nlower
)

7.4 Macro Atom

The macro atom is described in detail in [1]. The basic principal is that when an energy packet is absorbed that
the macro atom is on a certain level. Three probabilities govern the next step the Pup, Pdown and Pdown emission being
the probability for going to a higher level, a lower level and a lower level and emitting a photon while doing this
respectively (see Figure 1 in [1]).

7.3. Sobolev optical depth 27

TARDIS Documentation, Release 0.9.dev574

The macro atom is the most complex idea to implement as a data structure. The setup is done in ~tardisatomic, but we
will nonetheless discuss it here (as ~tardisatomic is even less documented than this one).

For each level we look at the line list to see what transitions (upwards or downwards are possible). We create a two
arrays, the first is a long one-dimensional array containing the probabilities. Each level contains a set of probabili-
ties, The first part of each set contains the upwards probabilities (internal upward), the second part the downwards
probabilities (internal downward), and the last part is the downward and emission probability.

each set is stacked after the other one to make one long one dimensional ~numpy.ndarray.

The second array is for book-keeping it has exactly the length as levels (with an example for the Si II level 15):

Level ID Probability index Nup Ndown Ntotal
14001015 ??? 17 5 17 + 5*2 = 27

We now will calculate the transition probabilites, using the radiative rates in Equation 20, 21, and 22 in [1]. Then we
calculate the downward emission probability from Equation 5, the downward and upward internal transition probabil-
ities in [2].

pemission down = Ri→lower (εupper − εlower)/Di
pinternal down = Ri→lower εlower/Di
, pinternal up = Ri→upper εi/Di

,

where i is the current level, ε is the energy of the level, andR is the radiative rates.

We ignore the probability to emit a k-packet as TARDIS only works with photon packets. Next we calculate the
radidative rates using equation 10 in [2].

Rupper→lower = Aupper→lowerβSobolevnupper

Rlower→upper = (Blower→uppernlower −Bupper→lowernupper)βSobolevJ
b
ν

,

with βSobolev = 1
τSobolev

(1− e−τSobolev) .

using the Einstein coefficients

Aupper→lower =
8ν2π2e2

mec3
glower

gupper
flower→upper

Aupper→lower =
4π2e2

mec︸ ︷︷ ︸
CEinstein

2ν2

c2
glower

gupper
flower→upper

Blower→upper =
4π2e2

mehνc
flower→upper

Blower→upper =
4π2e2

mec︸ ︷︷ ︸
CEinstein

1

hν
flower→upper

Bupper→lower =
4π2e2

mehνc
flower→upper

Bupper→lower =
4π2e2

mec︸ ︷︷ ︸
CEinstein

1

hν

glower

gupper
flower→upper

28 Chapter 7. Plasma

TARDIS Documentation, Release 0.9.dev574

we get

Rupper→lower = CEinstein
2ν2

c2
glower

gupper
flower→upperβSobolevnupper

Rlower→upper = CEinstein
1

hν
flower→upper(nlower −

glower

gupper
nupper)βSobolevJ

b
ν

This results in the transition probabilities:

pemission down = CEinstein
2ν2

c2
glower

gi
flower→iβSobolevni (εi − εlower)/Di

pinternal down = CEinstein
2ν2

c2
glower

gi
flower→iβSobolevni εlower/Di

pinternal up = CEinstein
1

hν
fi→upper(ni −

gi

gupper
nupper)βSobolevJ

b
ν εi/Di

,

and as we will normalise the transition probabilities numerically later, we can get rid of CEinstein, 1
Di

and num-
ber densities.

pemission down =
2ν2

c2
glower

gi
flower→iβSobolev (εi − εlower)

pinternal down =
2ν2

c2
glower

gi
flower→iβSobolev εlower

pinternal up =
1

hν
fi→upper (1− gi

gupper

nupper

ni
)︸ ︷︷ ︸

stimulated emission

βSobolevJ
b
ν εi

,

There are two parts for each of the probabilities, one that is pre-computed by ~tardisatomic and is in the HDF5 File,
and one that is computed during the plasma calculations:

pemission down =
2ν2

c2
glower

gi
flower→i(εi − εlower)︸ ︷︷ ︸

pre-computed

βSobolev

pinternal down =
2ν2

c2
glower

gi
flower→iεlower︸ ︷︷ ︸

pre-computed

βSobolev

pinternal up =
1

hν
fi→upper︸ ︷︷ ︸

pre-computed

βSobolevJ
b
ν (1− gi

gupper

nupper

ni
) εi.

7.5 NLTE treatment

NLTE treatment of lines is available both in ~LTEPlasma and the ~NebularPlasma class. This can be enabled by
specifying which species should be treated as NLTE with a simple list of tuples (e.g. [(20,1)] for Ca II).

7.5. NLTE treatment 29

TARDIS Documentation, Release 0.9.dev574

First let’s dive into the basics:

There are two rates to consider from a given level.

Rupper→lower = Aulnu︸ ︷︷ ︸
spontaneous emission

+ BulnuJ̄ν︸ ︷︷ ︸
stimulated emission

+ Culnune︸ ︷︷ ︸
collisional deexcitation

= nu (Aul +BulJ̄ν + Culne)︸ ︷︷ ︸
rul

Rlower→upper = BlunlJ̄ν︸ ︷︷ ︸
stimulated absorption

+ Clu nl ne︸ ︷︷ ︸
collisional excitation

= nl (BluJ̄ν + Culne)︸ ︷︷ ︸
rlu

,

where J̄ν (in LTE this is B(ν, T)) denotes the mean intensity at the frequency of the line and ne the number density
of electrons.

Next, we calculate the rate of change of a level by adding up all outgoing and all incoming transitions from level j.

dnj
dt

=
∑
i 6=j

Rij︸ ︷︷ ︸
incoming rate

−
∑
i6=j

Rji︸ ︷︷ ︸
outgoing rate

In a statistical equilibrium all incoming rates and outgoing rates add up to 0 (dnj

dt = 0). We use this to calculate the
level populations using the rate coefficients (rij, rji).−(R∞∈ + · · ·+R∞|) . . . R|∞

...
. . .

...
R∞| . . . −(R|∞ + · · ·+R|,|−∞)


n1

...
nj

 =

0
0
0


with the additional constrained that all the level number populations need to add up to the current ion population N
we change this to  1 1 . . .

...
. . .

...
R∞| . . . −(R|∞ + · · ·+R|,|−∞)


n1

...
nj

 =

N0
0


For a three level atom we have:

dn1

dt
= n2r21 + n3r31︸ ︷︷ ︸

incoming rate

− (n1r12 + n1r13)︸ ︷︷ ︸
outgoing rate

= 0

dn2

dt
= n1r12 + n3r32︸ ︷︷ ︸

incoming rate

− (n2r21 + n2r23)︸ ︷︷ ︸
outgoingrate

= 0

dn3

dt
= n1r13 + n2r23︸ ︷︷ ︸

incoming rate

− (n3r32 + n3r31)︸ ︷︷ ︸
outgoing rate

= 0,

which can be written in matrix from:−(r12 + r13) r21 r31

r12 −(r21 + r23) r32

r13 r23 −(r31 + r32)

n1

n2

n3

 =

0
0
0



30 Chapter 7. Plasma

TARDIS Documentation, Release 0.9.dev574

To solve for the level populations we need an additional constraint: n1 + n2 + n3 = N . By setting N = 1: we can
get the relative rates:  1 1 1

r12 −(r21 + r23) r32

r13 r23 −(r31 + r32)

n1

n2

n3

 =

1
0
0


Now we go back and look at the rate coefficients used for a level population - as an example dn2

dt :

dn2

dt
= n1r12 − n2(r21 + r23) + n3r32

= n1B12J̄12 + n1C12ne − n2A21 − n2B21J̄21 − n2C21ne

−n2B23J̄23 − n2C23ne + n3A32 + n3B32J̄32 + n3C32ne,

+n3A32 + n3C32ne,

Next we will group the stimulated emission and stimulated absorption terms as we can assume J̄12 = J̄21:

dn2

dt
= n1(B12J̄12 (1− n2

n1

B21

B12
)︸ ︷︷ ︸

stimulated emission term

+C12ne)− n2(A21 + C23ne + n2B23J̄23 (1− n3

n2

B32

B23
)︸ ︷︷ ︸

stimulated emission term

) + n3(A32 + C32ne)

7.5. NLTE treatment 31

TARDIS Documentation, Release 0.9.dev574

32 Chapter 7. Plasma

CHAPTER

EIGHT

RADIATIVE MONTE CARLO

The radiative monte carlo is initiated once the model is constructed.

Different line interactions

line_interaction_id == 0: scatter line_interaction_id == 1: downbranch line_interaction_id == 2: macro

8.1 Radiationfield estimators

During the monte-carlo run we collect two estimators for the radiation field:

Jestimator =
∑

εl

ν̄estimator =
∑

ενl,

where ε, ν are comoving energy and comoving frequency of a packet respectively.

To calculate the temperature and dilution factor we first calculate the mean intensity in each cell (J = 1
4π∆t V Jestimator

)., [2].

The weighted mean frequency is used to obtain the radiation temperature. Specifically, the radiation temperature is
chosen as the temperature of a black body that has the same weighted mean frequency as has been computed in the
simulation. Accordingly,

hν̄

kBTR
=

h

kBTR

ν̄estimator

Jestimator
= 24ζ(5)

15

π4
,

where the evaluation comes from the mean value of

x̄ =

∫∞
0
x4/(expx− 1)dx∫∞

0
x3/(expx− 1)dx

= 24ζ(5)
15

π4
= 3.8322 . . .

and so

TR =
1

x̄

h

kB

ν̄estimator

Jestimator

= 0.260945
h

kB

ν̄estimator

Jestimator
.

With the radiation temperature known, we can then obtain our estimate for for the dilution factor. Our radiation field
model in the nebular approximation is

J = WB(TR) = W
σSB
π

T 4
R,

33

TARDIS Documentation, Release 0.9.dev574

i.e. a dilute blackbody. Therefore we use our value of the mean intensity derrived from the estimator (above) to obtain
the dilution factor

W =
πJ

σSBT 4
R

=
1

4σSBT 4
R ∆t V

Jestimator.

There endeth the lesson.

34 Chapter 8. Radiative Monte Carlo

CHAPTER

NINE

GLOSSARY

meta-stable A level is considered meta-stable if there’s no line that has this level as the upper state. This means that
these levels can not be reached by absorbing a photon and are only reached when decaying.

synapps simple radiative transport code for supernovae. Please refer to Synapps for more information

35

https://c3.lbl.gov/es/

TARDIS Documentation, Release 0.9.dev574

36 Chapter 9. Glossary

CHAPTER

TEN

REFERENCES

37

TARDIS Documentation, Release 0.9.dev574

38 Chapter 10. References

BIBLIOGRAPHY

[1] L. B. Lucy. Monte Carlo transition probabilities. \aap, 384:725–735, March 2002.

[2] L. B. Lucy. Monte Carlo transition probabilities. II.. \aap, 403:261–275, May 2003.

[3] P. A. Mazzali and L. B. Lucy. The application of Monte Carlo methods to the synthesis of early-time supernovae
spectra. \aap, 279:447–456, November 1993.

39

TARDIS Documentation, Release 0.9.dev574

40 Bibliography

INDEX

M
meta-stable, 35

S
synapps, 35

41

	Introduction
	Installation
	Running TARDIS
	Graphical User Interface
	GUI Layout and Features

	Configuration File
	Plasma
	Model
	MonteCarlo
	Spectrum
	Config Reader

	Atomic Data
	HDF5 Dataset
	The Atom Data Class
	Indexing fun

	Plasma
	Base Plasma
	Plasma Types
	Sobolev optical depth
	Macro Atom
	NLTE treatment

	Radiative Monte Carlo
	Radiationfield estimators

	Glossary
	References
	Bibliography
	Index

