Trotter-Suzuki-MPI Python

Documentation
Release 1.5

Peter Wittek, Luca Calderaro

January 31, 2016

1 Introduction

1.1 Copyrightand License i it
1.2 Acknowledgement L e
1.3 CItations v v vt e e e e e e e e

2 Download and Installation

2.1 Dependencies i i e e e e e e e e e e e
3 Examples

3.1 Expectation values of the Hamiltonian and kinetic operators

3.2 Imaginary time evolution to approximate the ground-state energy

3.3 Dark Soliton Generation in Bose-Einstein Condensate using Phase Imprinting

4 Function Reference

4.1 Lattice Class e e e

42 State Classes o i e e e e e e e

4.3 Potential Classes e e e e e e

4.4 Hamiltonian Classes o i i i i e e e e e e

45 SolverClass e e e e e
Index

CONTENTS

DN = =

W W

CHAPTER
ONE

INTRODUCTION

The module is a massively parallel implementation of the Trotter-Suzuki approximation to simulate the evolution of
quantum systems classically. It relies on interfacing with C++ code with OpenMP for multicore execution, and it can
be accelerated by CUDA.

Key features of the Python interface:
* Fast execution by parallelization: OpenMP and CUDA are supported.
* Many-body simulations with non-interacting particles.
* Gross-Pitaevskii equation.
* Imaginary time evolution to approximate the ground state.
* Stationary and time-dependent external potential.

* NumPy arrays are supported for efficient data exchange.

Multi-platform: Linux, OS X, and Windows are supported.

1.1 Copyright and License

Trotter-Suzuki-MPI is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any
later version.

Trotter-Suzuki-MPI is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

1.2 Acknowledgement

The original high-performance kernels were developed by Carlos Bederidn. The distributed extension was carried out
while Peter Wittek was visiting the Department of Computer Applications in Science & Engineering at the Barcelona
Supercomputing Center, funded by the “Access to BSC Facilities” project of the HPC-Europe2 programme (contract
no. 228398). Generalizing the capabilities of kernels was carried out by Luca Calderaro while visiting the Quantum
Information Theory Group at ICFO-The Institute of Photonic Sciences, sponsored by the Erasmus+ programme.

https://github.com/Lucacalderaro/Master-Thesis/blob/master/Soliton%20generation%20on%20Bose-Einstein%20Condensate.ipynb
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
https://bitbucket.org/zzzoom/trottersuzuki
http://peterwittek.com/
http://www.bsc.es/computer-applications
http://www.bsc.es/
http://www.bsc.es/
http://www.hpc-europa.org/
https://www.icfo.eu/research/group_details.php?id=19
https://www.icfo.eu/research/group_details.php?id=19
https://www.icfo.eu/
http://ec.europa.eu/programmes/erasmus-plus/index_en.htm

Trotter-Suzuki-MPI Python Documentation, Release 1.5

1.3 Citations

1. Bederidn, C. & Dente, A. (2011). Boosting quantum evolutions using Trotter-Suzuki algorithms on GPUs.
Proceedings of HPCLatAm-11, 4th High-Performance Computing Symposium. PDF

2. Wittek, P. and Cucchietti, EM. (2013). A Second-Order Distributed Trotter-Suzuki Solver with a Hybrid CPU-
GPU Kernel. Computer Physics Communications, 184, pp. 1165-1171. PDF

3. Wittek, P. and Calderaro, L. (2015). Extended computational kernels in a massively parallel implementation of
the Trotter-Suzuki approximation. Computer Physics Communications, 197, pp. 339-340. PDF

2 Chapter 1. Introduction

http://www.famaf.unc.edu.ar/grupos/GPGPU/boosting_trotter-suzuki.pdf
http://dx.doi.org/10.1016/j.cpc.2012.12.008
http://dx.doi.org/10.1016/j.cpc.2012.12.008
http://arxiv.org/pdf/1208.2407
http://dx.doi.org/10.1016/j.cpc.2015.07.017
http://dx.doi.org/10.1016/j.cpc.2015.07.017
https://www.researchgate.net/profile/Peter_Wittek/publication/280962265_Extended_Computational_Kernels_in_a_Massively_Parallel_Implementation_of_the_TrotterSuzuki_Approximation/links/55cebd1f08aee19936fc5dcf.pdf

CHAPTER
TWO

DOWNLOAD AND INSTALLATION

The entire package for is available from the Python Package Index, containing the source code and examples. The

documentation is hosted on Read the Docs.

The latest development version is available on GitHub.

2.1 Dependencies

The module requires Numpy. The code is compatible with both Python 2 and 3.

2.1.1

The code is available on PyPI, hence it can be installed by

Installation

‘$ sudo pip install trottersuzuki

If you want the latest git version, follow the standard procedure for installing Python modules:

‘$ sudo python setup.py install

2.1.2 Build on Mac OS X

Before installing using pip, gcc should be installed first. As of OS X 10.9, gcc is just symlink to clang. To build
trottersuzuki and this extension correctly, it is recommended to install gcc using something like:

$ brew install gcc48

and set environment using:

alias
alias
alias
alias
alias
alias

export CC=/usr/local/bin/gcc
export CXX=/usr/local/bin/g++
export CPP=/usr/local/bin/cpp
export LD=/usr/local/bin/gcc

ct++=/usr/local/bin/c++
g++=/usr/local/bin/g++
gcc=/usr/local/bin/gcc
cpp=/usr/local/bin/cpp
ld=/usr/local/bin/gcc
cc=/usr/local/bin/gcc

Then you can issue

https://pypi.python.org/pypi/trottersuzuki
http://trotter-suzuki-mpi.readthedocs.org/
https://github.com/trotter-suzuki-mpi/trotter-suzuki-mpi
http://www.numpy.org/

Trotter-Suzuki-MPI Python Documentation, Release 1.5

$ sudo pip install trottersuzuki

4 Chapter 2. Download and Installation

CHAPTER
THREE

EXAMPLES

3.1 Expectation values of the Hamiltonian and kinetic operators

The following code block gives a simple example of initializing a state and calculating the expectation values of the
Hamiltonian and kinetic operators and the norm of the state after the evolution.

import numpy as np
from trottersuzuki import =

create a 2D lattice
grid = Lattice (256, 15, 15)

define an symmetric harmonic potential with unit frequecy
potential = HarmonicPotential (grid, 1, 1)

define the Hamiltonian:
particle_mass = 1.
hamiltonian = Hamiltonian (grid, potential, particle_mass)

define gaussian wave function state: we choose the ground state of the Hamiltonian
frequency = 1
state = GaussianState (grid, frequency)

define the solver
time_of_single_iteration = l.e-4

solver = Solver (grid, state, hamiltonian, time_of_single_iteration)

get some expected values from the initial state

print "norm: ", solver.get_squared_norm()
print "Total energy: ", solver.get_total_energy()
print "Kinetic energy: ", solver.get_kinetic_energy ()

evolve the state of 1000 iterations
number_of_iterations = 1000
solver.evolve (number_of_ iterations)

get some expected values from the evolved state

print "norm: ", solver.get_squared_norm()
print "Total energy: ", solver.get_total_energy()
print "Kinetic energy: ", solver.get_kinetic_energy ()

Trotter-Suzuki-MPI Python Documentation, Release 1.5

3.2 Imaginary time evolution to approximate the ground-state energy

import numpy as np
from trottersuzuki import =

create a 2D lattice
grid = Lattice (256, 15, 15)

define an symmetric harmonic potential with unit frequecy
potential = HarmonicPotential (grid, 1, 1)

define the Hamiltonian:
particle_mass = 1.
hamiltonian = Hamiltonian (grid, potential, particle_mass)

define gaussian wave function state: we choose the ground state of the Hamiltonian
frequency = 3
state = GaussianState (grid, frequency)

define the solver
time_of_single_iteration = 1l.e-4

solver = Solver(grid, state, hamiltonian, time_of_single_iteration)

get some expected values from the initial state

print "norm: ", solver.get_squared_norm()
print "Total energy: ", solver.get_total_energy()
print "Kinetic energy: ", solver.get_kinetic_energy ()

evolve the state of 40000 iterations
number_of_iterations = 40000

imaginary_evolution = true

solver.evolve (number_of_iterations, imaginary_evolution)

get some expected values from the evolved state

print "norm: ", solver.get_squared_norm()
print "Total energy: ", solver.get_total_energy()
print "Kinetic energy: ", solver.get_kinetic_energy ()

3.3 Dark Soliton Generation in Bose-Einstein Condensate using
Phase Imprinting

This example simulates the evolution of a dark soliton in a Bose-Einstein Condensate. For a more detailed description,
refer to this notebook.

from _ future import print_function
import numpy as np

import trottersuzuki as ts

from matplotlib import pyplot as plt

def get_external_potential (dim) :
"""Helper function to define external potential.
mrmmn
def ext_pot (_x, _y):
X = (_x — dimx0.5) * delta_x

6 Chapter 3. Examples

https://github.com/Lucacalderaro/Master-Thesis/blob/master/Soliton%20generation%20on%20Bose-Einstein%20Condensate.ipynb

Trotter-Suzuki-MPI Python Documentation, Release 1.5

y = (_Ly — dimx0.5) = delta_y

w_x = 1

w_y = 1 / np.sqrt(2)

return 0.5 x (W_X*W_X * X*X + W_V*W_Y * Y*y)

potential = np.zeros((dim, dim))
for y in range (0, dim):
for x in range (0, dim):
potentially, x] = ext_pot(x, V)
return potential

lattice parameters

dim = 640 # number of grid points at the edge
length = 50. # physics length of the lattice
delta_x = length / dim

delta_y = length / dim

Hamiltonian parameter

particle_mass = 1

scattering_lenght_2D = 5.662739242e-5

num_particles = 1700000

coupling_const = 4. * np.pi *» scattering_lenght_2D % num_particles

external_potential = get_external_potential (dim)

dddatdzdazaadasdddasdadadadadaddiadi
Ground state approximation

FHEFAF A FAAAAFAFEAFAFAAFAAEAFAAEA A

initial state
p_real = np.ones((dim, dim))
p_imag = np.zeros((dim, dim))
for y in range (dim) :
for x in range (dim) :
p_really, x] = 1./length

Norm2 = ts.calculate_norm2 (p_real, p_imag, delta_x, delta_y)
print (Norm2)

evolution variables
iterations = 18000
delta_t = 1l.e-4

launch evolution
ts.evolve (p_real, p_imag, particle_mass, external_ potential, delta_x, delta_y,
delta_t, iterations, coupling_const=coupling_const, imag_time=True)

Norm2 = ts.calculate_norm2 (p_real, p_imag, delta_x, delta_y)
print (Norm2)

heatmap = plt.pcolor (p_real)
plt.show ()

AHAFHAFAFHAFAFHAFAFHAFAF AR FHAHAAAA
Phase imprinting

FHEAAFRAFFRAFFHAFFRAFFRAFFHAFFRAFHHS

a = 1.98128

3.3. Dark Soliton Generation in Bose-Einstein Condensate using Phase Imprinting 7

Trotter-Suzuki-MPI Python Documentation, Release 1.5

theta = 1.5 * np.pi

for y in range (dim) :
for x in range (dim) :
tmp_real = np.cos(theta = 0.
tmp_imag = np.sin(theta * 0
tmp = p_really, x]

5 % (l.+np.tanh(-a * (x-dim/2.)xdelta_x)))
5 » (l.+np.tanh(-a * (x-dim/2.)=xdelta_x)))

p_really, x] = tmp_real * tmp - tmp_imag * p_imagly, x]

p_imagly, x] = tmp_real * p_imagly, x] + tmp_imag * tmp
np.savetxt ('InistatePhaselmprinted_real.dat', p_real, delimiter=" ")
np.savetxt ('InistatePhaseImprinted_imag.dat', p_imag, delimiter=' ")

heatmap = plt.pcolor (p_real)
plt.show ()

HHEHAFRAAAFAAAFAAFAARFAAAAFAFAFAAAAAA
Real time evolution

FHAFAFHAFAFHAFAFEAFAFEAFAFEAFAAHAFAA

evolution variables
iterations = 2000
delta_t = 5.e-5
kernel_type = 0

launch evolution
ts.evolve (p_real, p_imag, particle_mass, external_ potential,
delta_x, delta_y, delta_t, iterations, coupling_const=coupling_const)

calculate particle density
norm_2 = np.ones ((dim, dim))
for y in range (dim) :
for x in range (dim) :
norm_2[y, x] = (p_really, x] * p_really, x] +
p_imagly, x] * p_imagly, x]) * num_particles

heatmap = plt.pcolor (norm_2)
plt.show()

The results are the following plots:

8 Chapter 3. Examples

Trotter-Suzuki-MPI Python Documentation, Release 1.5

700 T T

600

500

400

300

200

100

0 100 200 300 400 500 &00 700

700

600

500

400

300

200

100

0 100 200 300 400 500 &00 700

3.3. Dark Soliton Generation in Bose-Einstein Condensate using Phase Imprinting 9

Trotter-Suzuki-MPI Python Documentation, Release 1.5

700 T T

600

500

400

300

200

100

0 100 200 300 400 500 &00 700

10 Chapter 3. Examples

CHAPTER
FOUR

FUNCTION REFERENCE

4.1 Lattice Class

class trottersuzuki.Lattice (dim=100, length_x=20.0, length_y=20.0, periodic_x_axis=False, peri-

odic_y_axis=False, angular_velocity=0.0)
This class defines the lattice structure over which the state and potential matrices are defined.

As to single-process execution, the lattice is a single tile which can be surrounded by a halo, in the case of
periodic boundary conditions.

eLattice(dim=100, length_x=20.0, length_y=20.0, periodic_x_axis=False, periodic_y_axis=False, angu-
lar_velocity=0.0)

Construct the Lattice.
—dim : Linear dimension of the squared lattice.
—length_x : Physical length of the lattice’s side along the x axis.
—length_y : Physical length of the lattice’s side along the y axis.
—periodic_x_axis : Boundary condition along the x axis (false=closed, true=periodic).
—periodic_y_axis : Boundary condition along the y axis (false=closed, true=periodic).
—angular_velocity : Angular velocity of the frame of reference.

C++ includes: trottersuzuki.h

4.2 State Classes

class t rottersuzuki.State (*args)
This class defines the quantum state.

C++ includes: trottersuzuki.h

get_mean_px ()
Return the expected value of the P_x operator.

get_mean_pxpx ()
Return the expected value of the P_x”"2 operator.

get_mean_py ()
Return the expected value of the P_y operator.

get_mean_pypy ()
Return the expected value of the P_y”2 operator.

11

Trotter-Suzuki-MPI Python Documentation, Release 1.5

get_mean_x ()
Return the expected value of the X operator.

get_mean_xx ()
Return the expected value of the X”2 operator.

get_mean_y ()
Return the expected value of the Y operator.

get_mean_yy ()
Return the expected value of the Y~2 operator.

get_particle_density ()
Return a matrix storing the squared norm of the wave function.

get_phase ()
Return a matrix storing the phase of the wave function.

get_squared_norm)
Return the squared norm of the quantum state.

write_particle_density (fileprefix)
Write to a file the squared norm of the wave function.

write_phase (fileprefix)
Write to a file the phase of the wave function.

write_to_file (fileprefix)
Write to a file the wave function.

class trottersuzuki.ExponentialState (_grid, _n_x=I, _n_y=I,
_p_real=None, _p_imag=None)
This class defines a quantum state with exponential like wave function.

This class is a child of State class.

_norm=1, _phase=0,

*ExponentialState(_grid, _n_x=1, _n_y=1, _norm=1, _phase=0, _p_real=None, _p_imag=None)

Construct the Lattice.
Construct the quantum state with exponential like wave function.
—grid : Lattice object.
—n_x : First quantum number.
—-n_y : Second quantum number.
—norm : Squared norm of the quantum state.
—phase : Relative phase of the wave function.
—p_real : Pointer to the real part of the wave function.
—p_imag : Pointer to the imaginary part of the wave function.
C++ includes: trottersuzuki.h

get_mean_px ()
Return the expected value of the P_x operator.

get_mean_pxpx ()
Return the expected value of the P_x”2 operator.

get_mean_py ()
Return the expected value of the P_y operator.

12 Chapter 4. Function Reference

Trotter-Suzuki-MPI Python Documentation, Release 1.5

get_mean_pypy ()
Return the expected value of the P_y”2 operator.

get_mean_ x()
Return the expected value of the X operator.

get_mean_xx ()
Return the expected value of the X2 operator.

get_mean_y ()
Return the expected value of the Y operator.

get_mean_yy ()
Return the expected value of the Y”2 operator.

get_particle_density ()
Return a matrix storing the squared norm of the wave function.

get_phase ()
Return a matrix storing the phase of the wave function.

get_squared_norm()
Return the squared norm of the quantum state.

write_particle_density (fileprefix)
Write to a file the squared norm of the wave function.

write_phase (fileprefix)
Write to a file the phase of the wave function.

write_to_file (fileprefix)
Werite to a file the wave function.

class trottersuzuki.GaussianState (_grid, _omega, _mean_x=0, _mean_y=0, _norm=1, _phase=0,

_p_real=None, _p_imag=None)
This class defines a quantum state with gaussian like wave function.

This class is a child of State class.

*GaussianState(_grid, _omega, _mean_x=0, _mean_y=0, _norm=1, _phase=0, _p_real=None,
_p_imag=None)

Construct the quantum state with gaussian like wave function.
—grid : Lattice object.
—omega : Gaussian coefficient.
—-mean_x : X coordinate of the gaussian function’s center.
—-mean_y : Y coordinate of the gaussian function’s center.
—norm : Squared norm of the state.
—phase : Relative phase of the wave function.
—p_real : Pointer to the real part of the wave function.
—p_imag : Pointer to the imaginary part of the wave function.

C++ includes: trottersuzuki.h

get_mean_px ()
Return the expected value of the P_x operator.

get_mean_pxpx ()
Return the expected value of the P_x”2 operator.

4.2, State Classes 13

Trotter-Suzuki-MPI Python Documentation, Release 1.5

get_mean_py ()
Return the expected value of the P_y operator.

get_mean_pypy ()
Return the expected value of the P_y”2 operator.

get_mean_x ()
Return the expected value of the X operator.

get_mean_xx ()
Return the expected value of the X2 operator.

get_mean_y ()
Return the expected value of the Y operator.

get_mean_yy ()
Return the expected value of the Y~2 operator.

get_particle_density ()
Return a matrix storing the squared norm of the wave function.

get_phase ()
Return a matrix storing the phase of the wave function.

get_squared_norm)
Return the squared norm of the quantum state.

write_particle_density (fileprefix)
Write to a file the squared norm of the wave function.

write_phase (fileprefix)
Write to a file the phase of the wave function.

write_to_file (fileprefix)
Write to a file the wave function.

class trottersuzuki.SinusoidState (_grid, _n_x=1, _n_y=1, _norm=1, _phase=0, _p_real=None,
_p_imag=None)
This class defines a quantum state with sinusoidal like wave function.

This class is a child of State class.
C++ includes: trottersuzuki.h
*SinusoidState(_grid, _n_x=1, _n_y=1, _norm=1, _phase=0, _p_real=None, _p_imag=None)
Construct the quantum state with sinusoidal like wave function.
—grid : Lattice object.
—n_x : First quantum number.
—-n_y : Second quantum number.
—norm : Squared norm of the quantum state.
—phase : Relative phase of the wave function.
—p_real : Pointer to the real part of the wave function.
—p_imag : Pointer to the imaginary part of the wave function.
C++ includes: trottersuzuki.h

get_mean_px ()
Return the expected value of the P_x operator.

14 Chapter 4. Function Reference

Trotter-Suzuki-MPI Python Documentation, Release 1.5

get_mean_pxpx ()
Return the expected value of the P_x”2 operator.

get_mean_py ()
Return the expected value of the P_y operator.

get_mean_pypy ()
Return the expected value of the P_y”2 operator.

get_mean_ x()
Return the expected value of the X operator.

get_mean_xx ()
Return the expected value of the X”2 operator.

get_mean_y ()
Return the expected value of the Y operator.

get_mean_yy ()
Return the expected value of the Y”2 operator.

get_particle_density ()
Return a matrix storing the squared norm of the wave function.

get_phase ()
Return a matrix storing the phase of the wave function.

get_squared_norm()
Return the squared norm of the quantum state.

write_particle_density (fileprefix)
Write to a file the squared norm of the wave function.

write_phase (fileprefix)
Write to a file the phase of the wave function.

write_to_file (fileprefix)
Werite to a file the wave function.

4.3 Potential Classes

class trottersuzuki.Potential (*args)
This class defines the external potential that is used for Hamiltonian class.

C++ includes: trottersuzuki.h
*Potential(*args)
Construct the external potential.
—grid : Lattice object.
—filename : Name of the file that stores the external potential matrix.
C++ includes: trottersuzuki.h

get_value (x,y)
Get the value at the coordinate (X,y).

class trottersuzuki.HarmonicPotential (_grid, _omegax, _omegay, _mass=1.0, _mean_x=0.0,
_mean_y=0.0)
HarmonicPotential(grid, omegax, omegay, mass=1., mean_x=0., mean_y=0.)

4.3. Potential Classes 15

Trotter-Suzuki-MPI Python Documentation, Release 1.5

This class defines the external potential, that is used for Hamiltonian class.
This class is a child of Potential class.
*HarmonicPotential(grid, omegax, omegay, mass=1., mean_x=0., mean_y=0.)
Construct the harmonic external potential.
Parameters: * grid :

Lattice object.

—omegax : Frequency along x axis.

—omegay : Frequency along y axis.

—mass : Mass of the particle.

—mean_x : Minimum of the potential along x axis.

—mean_y : Minimum of the potential along y axis.

C++ includes: trottersuzuki.h

get_value (x,y)
Return the value of the external potential at coordinate (X,y)

4.4 Hamiltonian Classes

class trottersuzuki.Hamiltonian (_grid, _potential=None, _mass=1.0, _coupling_a=0.0, _angu-
lar_velocity=0.0, _rot_coord_x=0, _rot_coord_y=0)

‘Hamiltonian(grid, potential=0, mass=1., coupling_a=0., angular_velocity=0., rot_coord_x=0,
rot_coord_y=0)*

This class defines the Hamiltonian of a single component system.

*‘Hamiltonian(grid, potential=0, mass=1., coupling_a=0., angular_velocity=0., rot_coord_x=0,
rot_coord_y=0)*

Construct the Hamiltonian of a single component system.
Parameters: * grid :

Lattice object.

— potential : Potential object.

— mass : Mass of the particle.

coupling_a : Coupling constant of intra-particle interaction.

angular_velocity : The frame of reference rotates with this angular velocity.

rot_coord_x : X coordinate of the center of rotation.

rot_coord_y : Y coordinate of the center of rotation.

C++ includes: trottersuzuki.h

16 Chapter 4. Function Reference

Trotter-Suzuki-MPI Python Documentation, Release 1.5

class trottersuzuki.Hamiltonian2Component (_grid, _potential=None, _potential_b=None,
_mass=1.0, _mass_b=1.0, _coupling_a=0.0, cou-
pling_ab=0.0, _coupling_b=0.0, _omega_r=0,
_omega_i=0, _angular_velocity=0.0,
_rot_coord_x=0, _rot_coord_y=0)

‘Hamiltonian2Component(grid, potential=0, potential_b=0, mass=1., mass_b=1., coupling_a=0.,
coupling_ab=0., coupling_b=0., omega_r=0, omega_i=0, angular_velocity=0., rot_coord_x=0,
rot_coord_y=0)*

This class defines the Hamiltonian of a two component system.

*‘Hamiltonian2Component(grid, potential=0, potential_b=0, mass=1., mass_b=1., coupling_a=0.,
coupling_ab=0., coupling_b=0., omega_r=0, omega_i=0, angular_velocity=0., rot_coord_x=0,
rot_coord_y=0)

Construct the Hamiltonian of a two component system.
Parameters: * grid :

Lattice object.

— potential : Potential of the first component.

— potential_b : Potential of the second component.

— mass : Mass of the first-component’s particles.

— mass_b : Mass of the second-component’s particles.

— coupling_a : Coupling constant of intra-particle interaction for the first component.

— coupling_ab : Coupling constant of inter-particle interaction between the two components.
— coupling_b : Coupling constant of intra-particle interaction for the second component.
— omega_r : Real part of the Rabi coupling.

— omega_i : Imaginary part of the Rabi coupling.

— angular_velocity : The frame of reference rotates with this angular velocity.

— rot_coord_x : X coordinate of the center of rotation.

— rot_coord_y : Y coordinate of the center of rotation.

C++ includes: trottersuzuki.h

4.5 Solver Class

class trottersuzuki.Solver (*args)
Solver(grid, state, hamiltonian, delta_t, kernel_type="cpu”) Solver(grid, statel, state2, hamiltonian, delta_t,
kernel_type="cpu”)

This class defines the evolution tasks.
*Solver(grid, state, hamiltonian, delta_t, kernel_type="cpu”)
Construct the Solver object for a single-component system.
Parameters: * grid :

Lattice object.

4.5. Solver Class 17

Trotter-Suzuki-MPI Python Documentation, Release 1.5

—state : State of the system.
—hamiltonian : Hamiltonian of the system.
—delta_t : A single evolution iteration, evolves the state for this time.

—kernel_type : Which kernel to use (either cpu or gpu).

Massively Parallel Trotter-Suzuki Solver

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If

not, see http://www.gnu.org/licenses/.

*Solver(grid, statel, state2, hamiltonian, delta_t, kernel_type="cpu”)
Construct the Solver object for a two-component system.
Parameters: * grid :

Lattice object.

—statel : First component’s state of the system.

—state2 : Second component’s state of the system.

—hamiltonian : Hamiltonian of the two-component system.
—delta_t : A single evolution iteration, evolves the state for this time.

—kernel_type : Which kernel to use (either cpu or gpu).

C++ includes: trottersuzuki.h

evolve (iterations, imag_time=False)
Evolve the state of the system.

get_inter_ species_energy ()
Get the inter-particles interaction energy of the system.

get_intra_species_energy (which=3)
Get the intra-particles interaction energy of the system.

get_kinetic_energy (which=3)
Get the kinetic energy of the system.

get_potential_energy (which=3)
Get the potential energy of the system.

get_rabi_energy ()
Get the Rabi energy of the system.

get_rotational_energy (which=3)
Get the rotational energy of the system.

get_squared_norm (which=3)
Get the squared norm of the state (default: total wave-function).

18

Chapter 4.

Function Reference

http://www.gnu.org/licenses/

Trotter-Suzuki-MPI Python Documentation, Release 1.5

get_total_energy ()
Get the total energy of the system.

4.5. Solver Class 19

Trotter-Suzuki-MPI Python Documentation, Release 1.5

20 Chapter 4. Function Reference

E

evolve() (trottersuzuki.Solver method), 18
ExponentialState (class in trottersuzuki), 12

G

GaussianState (class in trottersuzuki), 13

get_inter_species_energy() (trottersuzuki.Solver
method), 18

get_intra_species_energy()
method), 18

get_kinetic_energy() (trottersuzuki.Solver method), 18

get_mean_px() (trottersuzuki.ExponentialState method),
12

get_mean_px() (trottersuzuki.GaussianState method), 13

get_mean_px() (trottersuzuki.SinusoidState method), 14

get_mean_px() (trottersuzuki.State method), 11

get_mean_pxpx() (trottersuzuki.ExponentialState
method), 12

get_mean_pxpx() (trottersuzuki.GaussianState method),
13

get_mean_pxpx() (trottersuzuki.SinusoidState method),
14

get_mean_pxpx() (trottersuzuki.State method), 11

get_mean_py() (trottersuzuki.ExponentialState method),
12

get_mean_py() (trottersuzuki.GaussianState method), 14

get_mean_py() (trottersuzuki.SinusoidState method), 15

get_mean_py() (trottersuzuki.State method), 11

get_mean_pypy() (trottersuzuki.ExponentialState
method), 12

get_mean_pypy() (trottersuzuki.GaussianState method),
14

get_mean_pypy() (trottersuzuki.SinusoidState method),
15

get_mean_pypy() (trottersuzuki.State method), 11

get_mean_x() (trottersuzuki.ExponentialState method),
13

get_mean_x() (trottersuzuki.GaussianState method), 14

get_mean_x() (trottersuzuki.SinusoidState method), 15

get_mean_x() (trottersuzuki.State method), 11

get_mean_xx() (trottersuzuki.ExponentialState method),
13

(trottersuzuki.Solver

INDEX

get_mean_xx() (trottersuzuki.GaussianState method), 14
get_mean_xx() (trottersuzuki.SinusoidState method), 15
get_mean_xx() (trottersuzuki.State method), 12
get_mean_y() (trottersuzuki.ExponentialState method),
13
get_mean_y() (trottersuzuki.GaussianState method), 14
get_mean_y() (trottersuzuki.SinusoidState method), 15
get_mean_y() (trottersuzuki.State method), 12
get_mean_yy() (trottersuzuki.ExponentialState method),
13
get_mean_yy() (trottersuzuki.GaussianState method), 14
get_mean_yy() (trottersuzuki.SinusoidState method), 15
get_mean_yy() (trottersuzuki.State method), 12
get_particle_density() (trottersuzuki.ExponentialState

method), 13

get_particle_density() (trottersuzuki.GaussianState
method), 14

get_particle_density() (trottersuzuki.SinusoidState
method), 15

get_particle_density() (trottersuzuki.State method), 12
get_phase() (trottersuzuki.ExponentialState method), 13
get_phase() (trottersuzuki.GaussianState method), 14
get_phase() (trottersuzuki.SinusoidState method), 15
get_phase() (trottersuzuki.State method), 12
get_potential_energy() (trottersuzuki.Solver method), 18
get_rabi_energy() (trottersuzuki.Solver method), 18
get_rotational_energy() (trottersuzuki.Solver method), 18
get_squared_norm() (trottersuzuki.ExponentialState

method), 13

get_squared_norm() (trottersuzuki.GaussianState
method), 14

get_squared_norm() (trottersuzuki.SinusoidState
method), 15

get_squared_norm() (trottersuzuki.Solver method), 18
get_squared_norm() (trottersuzuki.State method), 12
get_total_energy() (trottersuzuki.Solver method), 18
get_value() (trottersuzuki.HarmonicPotential method), 16
get_value() (trottersuzuki.Potential method), 15

H

Hamiltonian (class in trottersuzuki), 16
Hamiltonian2Component (class in trottersuzuki), 16

21

Trotter-Suzuki-MPI Python Documentation, Release 1.5

HarmonicPotential (class in trottersuzuki), 15

L

Lattice (class in trottersuzuki), 11

P

Potential (class in trottersuzuki), 15

S

SinusoidState (class in trottersuzuki), 14
Solver (class in trottersuzuki), 17
State (class in trottersuzuki), 11

W

write_particle_density() (trottersuzuki.ExponentialState

method), 13

write_particle_density() (trottersuzuki.GaussianState
method), 14

write_particle_density() (trottersuzuki.SinusoidState
method), 15

write_particle_density() (trottersuzuki.State method), 12

write_phase() (trottersuzuki.ExponentialState method),
13

write_phase() (trottersuzuki.GaussianState method), 14

write_phase() (trottersuzuki.SinusoidState method), 15

write_phase() (trottersuzuki.State method), 12

write_to_file() (trottersuzuki.ExponentialState method),
13

write_to_file() (trottersuzuki.GaussianState method), 14

write_to_file() (trottersuzuki.SinusoidState method), 15

write_to_file() (trottersuzuki.State method), 12

22

Index

	Introduction
	Copyright and License
	Acknowledgement
	Citations

	Download and Installation
	Dependencies

	Examples
	Expectation values of the Hamiltonian and kinetic operators
	Imaginary time evolution to approximate the ground-state energy
	Dark Soliton Generation in Bose-Einstein Condensate using Phase Imprinting

	Function Reference
	Lattice Class
	State Classes
	Potential Classes
	Hamiltonian Classes
	Solver Class

	Index

