
wxmplot documentation
Release 0.9.6

Matthew Newville

November 21, 2011

CONTENTS

1 Downloading and Installation 3
1.1 Prerequisites . 3
1.2 Downloads . 3
1.3 Development Version . 3
1.4 Installation . 3
1.5 License . 4

2 PlotPanel: A wx.Panel for Basic 2D Line Plots 5
2.1 PlotPanel methods . 6
2.2 PlotFrame: a wx.Frame showing a PlotPanel . 8
2.3 PlotApp: a wx.App showing a PlotFrame . 8
2.4 Examples and Screenshots . 9

3 ImagePanel: A wx.Panel for Image Display 11
3.1 ImagePanel methods . 11
3.2 ImageFrame: A wx.Frame for Image Display . 12
3.3 Image configuration with ImageConfig . 12
3.4 Examples and Screenshots . 13

Index 15

i

ii

wxmplot documentation, Release 0.9.6

The wxmplot python package provides simple, rich plotting widgets for wxPython. These are built on top of the
matplotlib library, which provides a wonderful library for 2D plots and image display. The wxmplot package does not
attempt to expose all of matplotlib’s capabilities, but does provide widgets (wxPython panels) for basic 2D plotting
and image display that handle many use cases. The widgets are designed to be very easy to program with, and provide
end-users with interactivity and customization of the graphics without knowing matplotlib.

The wxmplot package is aimed at programmers who want decent scientific graphics for their applications that can
be manipulated by the end-user. If you’re a python programmer, comfortable writing matplotlib / pylab scripts, or
plotting interactively from IPython, this package may seem to limiting for your needs.

CONTENTS 1

http://www.wxpython.org/
http://matplotlib.sourceforge.net/

wxmplot documentation, Release 0.9.6

2 CONTENTS

CHAPTER

ONE

DOWNLOADING AND INSTALLATION

1.1 Prerequisites

The wxmplot package requires Python, wxPython, numpy, and matplotlib. Some of the example applications rely on
the Image module as well.

1.2 Downloads

The latest version is available from PyPI or CARS (Univ of Chicago):

Download Option Python Versions Location
Source Kit 2.6, 2.7

• wxmplot-0.9.6.tar.gz (CARS)
• wxmplot-0.9.6.tar.gz (PyPI)
• wxmplot-0.9.6.zip (CARS)
• wxmplot-0.9.6.zip (PyPI)

Development Version all use wxmplot github repository

if you have Python Setup Tools installed, you can download and install the package simply with:

easy_install -U wxmplot

1.3 Development Version

To get the latest development version, use:

git clone http://github.com/newville/wxmplot.git

1.4 Installation

This is a pure python module, so installation fon all platforms can use the source kit:

tar xvzf wxmplot-0.9.6.tar.gz or unzip wxmplot-0.9.6.zip
cd wxmplot-0.9.6/
python setup.py install

3

http://cars9.uchicago.edu/software/python/wxmplot/src/wxmplot-0.9.6.tar.gz
http://pypi.python.org/packages/source/w/wxmplot/wxmplot-0.9.6.tar.gz
http://cars9.uchicago.edu/software/python/wxmplot/src/wxmplot-0.9.6.zip
http://pypi.python.org/packages/source/w/wxmplot/wxmplot-0.9.6.zip
http://github.com/newville/wxmplot
http://pypi.python.org/pypi/setuptools

wxmplot documentation, Release 0.9.6

1.5 License

The wxmplot code is distribution under the following license:

Copyright (c) 2011 Matthew Newville, The University of Chicago

Permission to use and redistribute the source code or binary forms of this software and its documentation,
with or without modification is hereby granted provided that the above notice of copyright, these terms
of use, and the disclaimer of warranty below appear in the source code and documentation, and that none
of the names of The University of Chicago or the authors appear in advertising or endorsement of works
derived from this software without specific prior written permission from all parties.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THIS SOFTWARE.

4 Chapter 1. Downloading and Installation

CHAPTER

TWO

PLOTPANEL: A WX.PANEL FOR BASIC
2D LINE PLOTS

The PlotPanel class supports standard 2-d plots (line plots, scatter plots) with a simple-to-use programming in-
terface. This is derived from a wx.Panel and so can be included in a wx GUI anywhere a wx.Panel can be. A
PlotPanel provides the following capabilities for the end-user:

1. display x, y coordinates (left-click)

2. zoom in on a particular region of the plot (left-drag)

3. customize titles, labels, legend, color, linestyle, marker, and whether a grid is shown. A separate window is used
to set these attributes.

4. save high-qualiy plot images (as PNGs), copy to system clipboard, or print.

A PlotFrame that includes a PlotPanel, menus, and statusbar is also provided to give a separate plotting window
to an application. These both have the basic plotting methods of plot() to make a new plot with a single trace, and
oplot() to overplot another trace on top of an existing plot. These each take 2 equal-length numpy arrays (abscissa,
ordinate) for each trace. The PlotPanel and PlotFrame have many additional methods to interact with the plots.

class PlotPanel(parent[, size=(6.0, 3.7)[, dpi=96[, messenger=None[, show_config_popup=True[, **kws
]]]]])

Create a Plot Panel, a wx.Panel

Parameters

• parent – wx parent object.

• size – figure size in inches.

• dpi – dots per inch for figure.

• messenger (callable or None) – function for accepting output messages.

• show_config_popup (True/False) – whether to enable a popup-menu on right-click.

The size, and dpi arguments are sent to matplotlib’s Figure. The messenger should should be a func-
tion that accepts text messages from the panel for informational display. The default value is to use
sys.stdout.write().

The show_config_popup arguments controls whether to bind right-click to showing a poup menu with options
to zoom in or out, configure the plot, or save the image to a file.

Extra keyword parameters are sent to the wx.Panel.

5

wxmplot documentation, Release 0.9.6

2.1 PlotPanel methods

plot(x, y, **kws)
Draw a plot of the numpy arrays x and y, erasing any existing plot. The displayed curve for these data is called
a trace. The plot() method has many optional parameters, all using keyword/value argument. Since most of
these are shared with the oplot() method, the full set of parameters is given in Table of Arguments for plot()
and oplot()

oplot(x, y, **kws)
Draw a plot of the numpy arrays x and y, overwriting any existing plot.

The oplot() method has many optional parameters, as listed in Table of Arguments for plot() and oplot()

Table of Arguments for plot() and oplot(): Except where noted, the arguments are available for both plot() and
oplot().

argument type default meaning
title string None Plot title (plot() only)
xlabel string None ordinate label (plot() only)
ylabel string None abscissa label (plot() only)
y2label string None right-hand abscissa label (plot() only)
label string None trace label (defaults to ‘trace N’)
side left/right left side for ylabel
use_dates bool False to show dates in xlabel (plot() only)
grid None/bool None to show grid lines (plot() only)
color string blue color to use for trace
linewidth int 2 linewidth for trace
style string solid line-style for trace (solid, dashed, ...)
drawstyle string line style connecting points of trace
marker string None symbol to show for each point (+, o,)
markersize int 8 size of marker shown for each point
dy array None uncertainties for y values; error bars
ylog_scale bool False draw y axis with log(base 10) scale
xmin float None minimum displayed x value
xmax float None maximum displayed x value
ymin float None minimum displayed y value
ymax float None maximum displayed y value
xylims 2x2 list None [[xmin, xmax], [ymin, ymax]]
autoscale bool True whether to automatically set plot limits

As a general note, the configuration for the plot (title, labels, grid displays) and for each trace (color,
linewidth, ...) are preserved for a PlotPanel. A few specific notes:

1. The title, label, and grid arguments to plot() default to None, which means to use the
previously used value.

2. The use_dates option is not very rich, and simply turns x-values that are Unix timestamps
into x labels showing the dates.

3. While the default is to auto-scale the plot from the data ranges, specifying any of the limits
will override the corresponding limit(s).

4. The color argument can be any color name (“blue”, “red”, “black”, etc), standard X11 color
names (“cadetblue3”, “darkgreen”, etc), or an RGB hex color string of the form “#RRGGBB”.

5. Valid style arguments are ‘solid’, ‘dashed’, ‘dotted’, or ‘dash-dot’, with ‘solid’ as the default.

6 Chapter 2. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.6

6. Valid marker arguments are ‘+’, ‘o’, ‘x’, ‘^’, ‘v’, ‘>’, ‘<’, ‘|’, ‘_’, ‘square’, ‘diamond’, ‘thin
diamond’, ‘hexagon’, ‘pentagon’, ‘tripod 1’, or ‘tripod 2’.

7. Valid drawstyles are None (which connects points with a straight line), ‘steps-pre’, ‘steps-
mid’, or ‘steps-post’, which give a step between the points, either just after a point (‘steps-
pre’), midway between them (‘steps-mid’) or just before each point (‘steps-post’). Note that if
displaying discrete values as a function of time, left-to-right, and want to show a transition to
a new value as a sudden step, you want ‘steps-post’.

All of these values, and a few more settings controlling whether and how to display a plot legend can be
configured interactively (see Plot Configuration).

clear()
Clear the plot.

set_xylims(limits[, axes=None[, side=None[, autoscale=True]]])
Set the x and y limits for a plot based on a 2x2 list.

Parameters

• limits (2x2 list: [[xmin, xmax], [ymin, ymax]]) – x and y limits

• axes – instance of matplotlib axes to use (i.e, for right or left side y axes)

• side – set to ‘right’ to get right-hand axes.

• autoscale – whether to automatically scale to data range.

That is, if autoscale=False is passed in, then the limits are use.

get_xylims()
return current x, y limits.

unzoom()
unzoom the plot. The x, y limits for interactive zooms are stored, and this function unzooms one level.

unzoom_all()
unzoom the plot to the full data range.

update_line(trace, x, y[, side=’left’])
update an existing trace.

Parameters

• trace – integer index for the trace (0 is the first trace)

• x – array of x values

• y – array of y values

• side – which y axis to use (‘left’ or ‘right’).

This function is particularly useful for data that is changing and you wish to update the line with the new data
without completely redrawing the entire plot. Using this method is substantially faster than replotting.

set_title(title)
set the plot title.

set_xlabel(label)
set the label for the ordinate axis.

set_ylabel(label)
set the label for the left-hand abscissa axis.

set_y2label(label)
set the label for the right-hand abscissa axis.

2.1. PlotPanel methods 7

wxmplot documentation, Release 0.9.6

set_bgcol(color)
set the background color for the PlotPanel.

write_message(message)
write a message to the messenger. For a PlotPanel embedded in a PlotFrame, this will go the the StatusBar.

save_figure()
show a FileDialog to save a PNG image of the current plot.

configure()
show plot configuration window for customizing plot.

2.2 PlotFrame: a wx.Frame showing a PlotPanel

A PlotFrame is a wx.Frame – a separate plot window – that contains a PlotPanel and is decorated with a status
bar and menubar with menu items for saving, printing and configuring plots..

class PlotFrame(parent[, size=(700, 450)[, title=None[, **kws]]])
create a plot frame.

The frame will have a panel member holding the underlying PlotPanel.

2.3 PlotApp: a wx.App showing a PlotFrame

A PlotApp is a wx.App – an application – that consists of a PlotFrame. This and is decorated with a status bar
and menubar with menu items for saving, printing and configuring plots..

class PlotAppp
create a plot application. This has methods plot(), oplot(), and write_message(), which are sent to
the underlying PlotPanel.

This allows very simple scripts which give plot interactivity and customization:

from wxmplot import PlotApp
from numpy import arange, sin, cos, exp, pi

xx = arange(0.0,12.0,0.1)
y1 = 1*sin(2*pi*xx/3.0)
y2 = 4*cos(2*pi*(xx-1)/5.0)/(6+xx)
y3 = -pi + 2*(xx/10. + exp(-(xx-3)/5.0))

p = PlotApp()
p.plot(xx, y1, color=’blue’, style=’dashed’,

title=’Example PlotApp’, label=’a’,
ylabel=r’$k^2\chi(k) $’,
xlabel=r’$ k \ (\AA^{-1}) $’)

p.oplot(xx, y2, marker=’+’, linewidth=0, label =r’$ x_1 $’)
p.oplot(xx, y3, style=’solid’, label =’x_2’)
p.write_message(Try Help->Quick Reference’)
p.run()

8 Chapter 2. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.6

2.4 Examples and Screenshots

A basic plot from a PlotFrame looks like this:

The configuration window (Options->Configuration or Ctrl-K) for this plot looks like this:

2.4. Examples and Screenshots 9

wxmplot documentation, Release 0.9.6

where all the options there will dynamically change the plot in the PlotPanel.

Many more examples are given in the examples directory in the source distribution kit. The demo.py script there will
show several 2D Plot panel examples, including a plot which uses a timer to simulate a dynamic plot, updating the plot
as fast as it can - typically 10 to 30 times per second, depending on your machine. The stripchart.py example script
also shows a dynamic, time-based plot.

10 Chapter 2. PlotPanel: A wx.Panel for Basic 2D Line Plots

CHAPTER

THREE

IMAGEPANEL: A WX.PANEL FOR IMAGE
DISPLAY

The ImagePanel class supports image display (ie, gray-scale and false-color intensity maps for 2-D arrays. As with
PlotPanel, this is derived from a wx.Panel and so can be included in a wx GUI anywhere a wx.Panel can be.
While the image can be customized programmatically, the only interactivity built in to the ImagePanel is the ability
to zoom in and out.

In contrast, an ImageFrame provides many more ways to manipulate an image, and will be discussed below.

class ImagePanel(parent[, size=(4.5, 4.0)[, dpi=96[, messenger=None[, data_callback=None[, **kws]]
]]])

Create an Image Panel, a wx.Panel

Parameters

• parent – wx parent object.

• size – figure size in inches.

• dpi – dots per inch for figure.

• messenger (callable or None) – function for accepting output messages.

• data_callback (callable or None) – function to call with new data, on display()

The size, and dpi arguments are sent to matplotlib’s Figure. The messenger should should be a func-
tion that accepts text messages from the panel for informational display. The default value is to use
sys.stdout.write().

The data_callback is useful if some parent frame wants to know if the data has been changed with display().
ImageFrame uses this to display the intensity max/min values.

Extra keyword parameters are sent to the wx.Panel.

The configuration settings for an image (its colormap, smoothing, orientation, and so on) are controlled through
configuration attributes.

3.1 ImagePanel methods

display(data[, x=None[, y=None[, **kws]]])
display a new image from the 2-D numpy array data. If provided, the x and y values will be used for display
purposes, as to give scales to the pixels of the data.

Additional keyword arguments will be sent to a data_callback function, if that has been defined.

11

wxmplot documentation, Release 0.9.6

3.2 ImageFrame: A wx.Frame for Image Display

In addition to providing a top-level window frame holding an ImagePanel, an ImageFrame provides the end-user
with many ways to manipulate the image:

1. display x, y, intensity coordinates (left-click)

2. zoom in on a particular region of the plot (left-drag).

3. change color maps.

4. flip and rotate image.

5. select optional smoothing interpolation.

6. modify intensity scales.

7. save high-qualiy plot images (as PNGs), copy to system clipboard, or print.

These options are all available programmatically as well, by setting the configuration attributes and redrawing the
image.

class ImageFrame(parent[, size=(550, 450)[, **kws]])
Create an Image Frame, a wx.Frame.

3.3 Image configuration with ImageConfig

To change any of the attributes of the image on an ImagePanel, you can set the corresponding attribute of the
panel’s conf. That is, if you create an ImagePanel, you can set the colormap with:

import matplotlib.cm as cmap
im_panel = ImagePanel(parent)
im_panel.display(data_array)

now change colormap:
im_panel.conf.cmap = cmap.cool
im_panel.redraw()

now rotate the image by 90 degrees (clockwise):
im_panel.conf.rot = True
im_panel.redraw()

For a ImageFrame, you can access this attribute as frame.panel.conf.cmap.

The list of configuration attributes and their meaning are given in the Table of Image Configuration attributes Table
of Image Configuration attributes: All of these are members of the panel.conf object, as shown in the example above.

attribute type default meaning
rot bool False rotate image 90 degrees clockwise
flip_ud bool False flip image top/bottom
flip_lr bool False flip image left/right
log_scale bool False display log(image)
auto_intensity bool True auto-scale the intensity

cmap cmap_reverse interp xylims cmap_lo cmap_hi int_lo int_hi

12 Chapter 3. ImagePanel: A wx.Panel for Image Display

wxmplot documentation, Release 0.9.6

3.4 Examples and Screenshots

A basic plot from a ImageFrame looks like this:

This screenshot (from Mac OS X) doesn’t show the top menu, which includes menus for rotating or flipping the image,
selecting an interpolation scheme, or saving PNG images of either the image or the colormap.

3.4. Examples and Screenshots 13

wxmplot documentation, Release 0.9.6

14 Chapter 3. ImagePanel: A wx.Panel for Image Display

INDEX

C
clear(), 7
configure(), 8

D
display(), 11

G
get_xylims(), 7

I
ImageFrame (built-in class), 12
ImagePanel (built-in class), 11

O
oplot(), 6

P
plot(), 6
PlotAppp (built-in class), 8
PlotFrame (built-in class), 8
PlotPanel (built-in class), 5

S
save_figure(), 8
set_bgcol(), 7
set_title(), 7
set_xlabel(), 7
set_xylims(), 7
set_y2label(), 7
set_ylabel(), 7

U
unzoom(), 7
unzoom_all(), 7
update_line(), 7

W
write_message(), 8

15

	Downloading and Installation
	Prerequisites
	Downloads
	Development Version
	Installation
	License

	PlotPanel: A wx.Panel for Basic 2D Line Plots
	PlotPanel methods
	PlotFrame: a wx.Frame showing a PlotPanel
	PlotApp: a wx.App showing a PlotFrame
	Examples and Screenshots

	ImagePanel: A wx.Panel for Image Display
	ImagePanel methods
	ImageFrame: A wx.Frame for Image Display
	Image configuration with ImageConfig
	Examples and Screenshots

	Index

